These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 30963270)

  • 1. Deep learning-based image restoration algorithm for coronary CT angiography.
    Tatsugami F; Higaki T; Nakamura Y; Yu Z; Zhou J; Lu Y; Fujioka C; Kitagawa T; Kihara Y; Iida M; Awai K
    Eur Radiol; 2019 Oct; 29(10):5322-5329. PubMed ID: 30963270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in Image Quality and Visibility of Coronary Arteries, Stents, and Valve Structures on CT Angiography by Deep Learning Reconstruction.
    Otgonbaatar C; Ryu JK; Shin J; Woo JY; Seo JW; Shim H; Hwang DH
    Korean J Radiol; 2022 Nov; 23(11):1044-1054. PubMed ID: 36196766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning reconstruction allows for usage of contrast agent of lower concentration for coronary CTA than filtered back projection and hybrid iterative reconstruction.
    Otgonbaatar C; Ryu JK; Shin J; Kim HM; Seo JW; Shim H; Hwang DH
    Acta Radiol; 2023 Mar; 64(3):1007-1017. PubMed ID: 35979586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution deep learning reconstruction at coronary computed tomography angiography to evaluate the coronary arteries and in-stent lumen: an initial experience.
    Orii M; Sone M; Osaki T; Ueyama Y; Chiba T; Sasaki T; Yoshioka K
    BMC Med Imaging; 2023 Oct; 23(1):171. PubMed ID: 37904089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography.
    Ryu JK; Kim KH; Otgonbaatar C; Kim DS; Shim H; Seo JW
    Br J Radiol; 2024 Jun; 97(1159):1286-1294. PubMed ID: 38733576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving image quality with super-resolution deep-learning-based reconstruction in coronary CT angiography.
    Nagayama Y; Emoto T; Kato Y; Kidoh M; Oda S; Sakabe D; Funama Y; Nakaura T; Hayashi H; Takada S; Uchimura R; Hatemura M; Tsujita K; Hirai T
    Eur Radiol; 2023 Dec; 33(12):8488-8500. PubMed ID: 37432405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Value of knowledge-based iterative model reconstruction in low-kV 256-slice coronary CT angiography.
    Yuki H; Utsunomiya D; Funama Y; Tokuyasu S; Namimoto T; Hirai T; Itatani R; Katahira K; Oshima S; Yamashita Y
    J Cardiovasc Comput Tomogr; 2014; 8(2):115-23. PubMed ID: 24661824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Deep learning reconstruction algorithm for coronary CT angiography in assessing obstructive coronary artery disease caused by calcified lesions: the clinical application value].
    Xu C; Yi Y; Li YY; Guo YB; Jin ZY; Wang YN
    Zhonghua Yi Xue Za Zhi; 2021 Oct; 101(39):3202-3207. PubMed ID: 34689531
    [No Abstract]   [Full Text] [Related]  

  • 9. Improvement of Spatial Resolution on Coronary CT Angiography by Using Super-Resolution Deep Learning Reconstruction.
    Tatsugami F; Higaki T; Kawashita I; Fukumoto W; Nakamura Y; Matsuura M; Lee TC; Zhou J; Cai L; Kitagawa T; Nakano Y; Awai K
    Acad Radiol; 2023 Nov; 30(11):2497-2504. PubMed ID: 36681533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.
    Akagi M; Nakamura Y; Higaki T; Narita K; Honda Y; Zhou J; Yu Z; Akino N; Awai K
    Eur Radiol; 2019 Nov; 29(11):6163-6171. PubMed ID: 30976831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction.
    Hong JH; Park EA; Lee W; Ahn C; Kim JH
    Korean J Radiol; 2020 Oct; 21(10):1165-1177. PubMed ID: 32729262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms.
    Oostveen LJ; Meijer FJA; de Lange F; Smit EJ; Pegge SA; Steens SCA; van Amerongen MJ; Prokop M; Sechopoulos I
    Eur Radiol; 2021 Aug; 31(8):5498-5506. PubMed ID: 33693996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis.
    van Stiphout JA; Driessen J; Koetzier LR; Ruules LB; Willemink MJ; Heemskerk JWT; van der Molen AJ
    Eur Radiol; 2022 May; 32(5):2921-2929. PubMed ID: 34913104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction.
    Ichikawa Y; Kanii Y; Yamazaki A; Nagasawa N; Nagata M; Ishida M; Kitagawa K; Sakuma H
    Jpn J Radiol; 2021 Jun; 39(6):598-604. PubMed ID: 33449305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image quality comparison of lower extremity CTA between CT routine reconstruction algorithms and deep learning reconstruction.
    Zhang D; Mu C; Zhang X; Yan J; Xu M; Wang Y; Wang Y; Xue H; Chen Y; Jin Z
    BMC Med Imaging; 2023 Feb; 23(1):33. PubMed ID: 36800947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Feasibility of Deep Learning-Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation.
    Kojima T; Yamasaki Y; Matsuura Y; Mikayama R; Shirasaka T; Kondo M; Kamitani T; Kato T; Ishigami K; Yabuuchi H
    J Comput Assist Tomogr; 2024 Jan-Feb 01; 48(1):77-84. PubMed ID: 37574664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dark-Blood Computed Tomography Angiography Combined With Deep Learning Reconstruction for Cervical Artery Wall Imaging in Takayasu Arteritis.
    Su T; Zhang Z; Chen Y; Wang Y; Li Y; Xu M; Wang J; Li J; Tian X; Jin Z
    Korean J Radiol; 2024 Apr; 25(4):384-394. PubMed ID: 38528696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T
    AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431
    [No Abstract]   [Full Text] [Related]  

  • 19. Diagnostic value of deep learning reconstruction for radiation dose reduction at abdominal ultra-high-resolution CT.
    Nakamura Y; Narita K; Higaki T; Akagi M; Honda Y; Awai K
    Eur Radiol; 2021 Jul; 31(7):4700-4709. PubMed ID: 33389036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of moyamoya disease in CT angiography using ultra-high-resolution computed tomography: Application of deep learning reconstruction.
    Fukushima Y; Fushimi Y; Funaki T; Sakata A; Hinoda T; Nakajima S; Sakamoto R; Yoshida K; Miyamoto S; Nakamoto Y
    Eur J Radiol; 2022 Jun; 151():110294. PubMed ID: 35427840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.