BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30963683)

  • 21. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precise Modifications of Both Exogenous and Endogenous Genes in Rice by Prime Editing.
    Li H; Li J; Chen J; Yan L; Xia L
    Mol Plant; 2020 May; 13(5):671-674. PubMed ID: 32222486
    [No Abstract]   [Full Text] [Related]  

  • 23. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.
    Li T; Liu B; Chen CY; Yang B
    J Genet Genomics; 2016 May; 43(5):297-305. PubMed ID: 27180265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adenine base editors catalyze cytosine conversions in human cells.
    Kim HS; Jeong YK; Hur JK; Kim JS; Bae S
    Nat Biotechnol; 2019 Oct; 37(10):1145-1148. PubMed ID: 31548727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing.
    Li X; Zhou W; Ren Y; Tian X; Lv T; Wang Z; Fang J; Chu C; Yang J; Bu Q
    J Genet Genomics; 2017 Mar; 44(3):175-178. PubMed ID: 28291639
    [No Abstract]   [Full Text] [Related]  

  • 26. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice].
    Xin GW; Hu XX; Wang KJ; Wang XC
    Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice.
    Xu R; Yang Y; Qin R; Li H; Qiu C; Li L; Wei P; Yang J
    J Genet Genomics; 2016 Aug; 43(8):529-32. PubMed ID: 27543262
    [No Abstract]   [Full Text] [Related]  

  • 30. QTL editing confers opposing yield performance in different rice varieties.
    Shen L; Wang C; Fu Y; Wang J; Liu Q; Zhang X; Yan C; Qian Q; Wang K
    J Integr Plant Biol; 2018 Feb; 60(2):89-93. PubMed ID: 27628577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced genome editing in rice using single transcript unit CRISPR-LbCpf1 systems.
    Xu R; Qin R; Li H; Li J; Yang J; Wei P
    Plant Biotechnol J; 2019 Mar; 17(3):553-555. PubMed ID: 30367555
    [No Abstract]   [Full Text] [Related]  

  • 33. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems.
    Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK
    J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved Base Editor for Efficiently Inducing Genetic Variations in Rice with CRISPR/Cas9-Guided Hyperactive hAID Mutant.
    Ren B; Yan F; Kuang Y; Li N; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2018 Apr; 11(4):623-626. PubMed ID: 29382569
    [No Abstract]   [Full Text] [Related]  

  • 35. Expanding the Range of CRISPR/Cas9 Genome Editing in Rice.
    Hu X; Wang C; Fu Y; Liu Q; Jiao X; Wang K
    Mol Plant; 2016 Jun; 9(6):943-5. PubMed ID: 26995294
    [No Abstract]   [Full Text] [Related]  

  • 36. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice.
    Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K
    Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711
    [No Abstract]   [Full Text] [Related]  

  • 37. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-efficiency TALEN-based gene editing produces disease-resistant rice.
    Li T; Liu B; Spalding MH; Weeks DP; Yang B
    Nat Biotechnol; 2012 May; 30(5):390-2. PubMed ID: 22565958
    [No Abstract]   [Full Text] [Related]  

  • 39. Precise A•T to G•C base editing in the zebrafish genome.
    Qin W; Lu X; Liu Y; Bai H; Li S; Lin S
    BMC Biol; 2018 Nov; 16(1):139. PubMed ID: 30458760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice.
    Li S; Li J; Zhang J; Du W; Fu J; Sutar S; Zhao Y; Xia L
    J Exp Bot; 2018 Sep; 69(20):4715-4721. PubMed ID: 29955893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.