BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30963683)

  • 41. Development of japonica Photo-Sensitive Genic Male Sterile Rice Lines by Editing Carbon Starved Anther Using CRISPR/Cas9.
    Li Q; Zhang D; Chen M; Liang W; Wei J; Qi Y; Yuan Z
    J Genet Genomics; 2016 Jun; 43(6):415-9. PubMed ID: 27317309
    [No Abstract]   [Full Text] [Related]  

  • 42. Base editing with a Cpf1-cytidine deaminase fusion.
    Li X; Wang Y; Liu Y; Yang B; Wang X; Wei J; Lu Z; Zhang Y; Wu J; Huang X; Yang L; Chen J
    Nat Biotechnol; 2018 Apr; 36(4):324-327. PubMed ID: 29553573
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 44. EditR: A Method to Quantify Base Editing from Sanger Sequencing.
    Kluesner MG; Nedveck DA; Lahr WS; Garbe JR; Abrahante JE; Webber BR; Moriarity BS
    CRISPR J; 2018 Jun; 1(3):239-250. PubMed ID: 31021262
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System.
    Li J; Sun Y; Du J; Zhao Y; Xia L
    Mol Plant; 2017 Mar; 10(3):526-529. PubMed ID: 27940306
    [No Abstract]   [Full Text] [Related]  

  • 46. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy.
    Ryu SM; Koo T; Kim K; Lim K; Baek G; Kim ST; Kim HS; Kim DE; Lee H; Chung E; Kim JS
    Nat Biotechnol; 2018 Jul; 36(6):536-539. PubMed ID: 29702637
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Web-based design and analysis tools for CRISPR base editing.
    Hwang GH; Park J; Lim K; Kim S; Yu J; Yu E; Kim ST; Eils R; Kim JS; Bae S
    BMC Bioinformatics; 2018 Dec; 19(1):542. PubMed ID: 30587106
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Better base editors.
    Rusk N
    Nat Methods; 2018 Oct; 15(10):763. PubMed ID: 30275576
    [No Abstract]   [Full Text] [Related]  

  • 49. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants.
    Lu HP; Liu SM; Xu SL; Chen WY; Zhou X; Tan YY; Huang JZ; Shu QY
    Plant Biotechnol J; 2017 Nov; 15(11):1371-1373. PubMed ID: 28688132
    [No Abstract]   [Full Text] [Related]  

  • 50. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.
    Minkenberg B; Xie K; Yang Y
    Plant J; 2017 Feb; 89(3):636-648. PubMed ID: 27747971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion.
    Wang X; Li J; Wang Y; Yang B; Wei J; Wu J; Wang R; Huang X; Chen J; Yang L
    Nat Biotechnol; 2018 Nov; 36(10):946-949. PubMed ID: 30125268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Seamless Genome Editing in Rice via Gene Targeting and Precise Marker Elimination.
    Nishizawa-Yokoi A; Saika H; Toki S
    Methods Mol Biol; 2016; 1469():137-46. PubMed ID: 27557691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prime editing-mediated precise knockin of protein tag sequences in the rice genome.
    Li J; Ding J; Zhu J; Xu R; Gu D; Liu X; Liang J; Qiu C; Wang H; Li M; Qin R; Wei P
    Plant Commun; 2023 May; 4(3):100572. PubMed ID: 36883004
    [No Abstract]   [Full Text] [Related]  

  • 54. Adenine base editing in mouse embryos to correct HCM.
    Lim GB
    Nat Rev Cardiol; 2021 Dec; 18(12):807. PubMed ID: 34650226
    [No Abstract]   [Full Text] [Related]  

  • 55. Developing guanine base editors for G-to-T editing in rice.
    Liu L; Zhang Z; Wang C; Yan F; Sun W; Zhou X; Miao W; Zhou H
    J Integr Plant Biol; 2024 Jun; ():. PubMed ID: 38934772
    [No Abstract]   [Full Text] [Related]  

  • 56. Expanding the Chemical Scope of RNA Base Editors.
    Rauch S; Dickinson BC
    Biochemistry; 2019 Aug; 58(34):3555-3556. PubMed ID: 31411021
    [No Abstract]   [Full Text] [Related]  

  • 57. Disease context and gene editing.
    Bowman CE
    J R Soc Med; 2017 Nov; 110(11):424. PubMed ID: 29148872
    [No Abstract]   [Full Text] [Related]  

  • 58. Call for Papers: Expanding the Scale and Scope of Therapeutic Gene Editing.
    Kiem HP; Gaudelli NN; Urnov FD; Frederickson RM; Herzog RW
    Mol Ther; 2020 Aug; 28(8):1743. PubMed ID: 32679031
    [No Abstract]   [Full Text] [Related]  

  • 59. Base editing in crops: current advances, limitations and future implications.
    Mishra R; Joshi RK; Zhao K
    Plant Biotechnol J; 2020 Jan; 18(1):20-31. PubMed ID: 31365173
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant abiotic stress response and nutrient use efficiency.
    Gong Z; Xiong L; Shi H; Yang S; Herrera-Estrella LR; Xu G; Chao DY; Li J; Wang PY; Qin F; Li J; Ding Y; Shi Y; Wang Y; Yang Y; Guo Y; Zhu JK
    Sci China Life Sci; 2020 May; 63(5):635-674. PubMed ID: 32246404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.