BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30963910)

  • 1. Household members do not contact each other at random: implications for infectious disease modelling.
    Goeyvaerts N; Santermans E; Potter G; Torneri A; Van Kerckhove K; Willem L; Aerts M; Beutels P; Hens N
    Proc Biol Sci; 2018 Dec; 285(1893):20182201. PubMed ID: 30963910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A household-based study of contact networks relevant for the spread of infectious diseases in the highlands of Peru.
    Grijalva CG; Goeyvaerts N; Verastegui H; Edwards KM; Gil AI; Lanata CF; Hens N;
    PLoS One; 2015; 10(3):e0118457. PubMed ID: 25734772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact profiles in eight European countries and implications for modelling the spread of airborne infectious diseases.
    Kretzschmar M; Mikolajczyk RT
    PLoS One; 2009 Jun; 4(6):e5931. PubMed ID: 19536278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics.
    Volz EM; Miller JC; Galvani A; Ancel Meyers L
    PLoS Comput Biol; 2011 Jun; 7(6):e1002042. PubMed ID: 21673864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity - a simulation study.
    Bakuli A; Klawonn F; Karch A; Mikolajczyk R
    Theor Biol Med Model; 2017 Dec; 14(1):26. PubMed ID: 29237462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deterministic epidemic models with explicit household structure.
    House T; Keeling MJ
    Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating contact patterns relevant to the spread of infectious diseases in Russia.
    Ajelli M; Litvinova M
    J Theor Biol; 2017 Apr; 419():1-7. PubMed ID: 28161415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models.
    Rolls DA; Wang P; McBryde E; Pattison P; Robins G
    PLoS One; 2015; 10(11):e0142181. PubMed ID: 26555701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; Génois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating individual and household reproduction numbers in an emerging epidemic.
    Fraser C
    PLoS One; 2007 Aug; 2(8):e758. PubMed ID: 17712406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Close contact infection dynamics over time: insights from a second large-scale social contact survey in Flanders, Belgium, in 2010-2011.
    Hoang TV; Coletti P; Kifle YW; Kerckhove KV; Vercruysse S; Willem L; Beutels P; Hens N
    BMC Infect Dis; 2021 Mar; 21(1):274. PubMed ID: 33736606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Social contact patterns in Vietnam and implications for the control of infectious diseases.
    Horby P; Pham QT; Hens N; Nguyen TT; Le QM; Dang DT; Nguyen ML; Nguyen TH; Alexander N; Edmunds WJ; Tran ND; Fox A; Nguyen TH
    PLoS One; 2011 Feb; 6(2):e16965. PubMed ID: 21347264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge-based epidemic spreading in degree-correlated complex networks.
    Wang Y; Ma J; Cao J; Li L
    J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective degree household network disease model.
    Ma J; van den Driessche P; Willeboordse FH
    J Math Biol; 2013 Jan; 66(1-2):75-94. PubMed ID: 22252505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying heterogeneous contact patterns in Japan: a social contact survey.
    Munasinghe L; Asai Y; Nishiura H
    Theor Biol Med Model; 2019 Mar; 16(1):6. PubMed ID: 30890153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A penalized likelihood approach to estimate within-household contact networks from egocentric data.
    Potter GE; Hens N
    J R Stat Soc Ser C Appl Stat; 2013 Aug; 62(4):629-648. PubMed ID: 23935218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the within-household infection rate in emerging SIR epidemics among a community of households.
    Ball F; Shaw L
    J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of household distribution on transmission and control of highly infectious diseases.
    Becker NG; Dietz K
    Math Biosci; 1995 Jun; 127(2):207-19. PubMed ID: 7795319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Social encounter profiles of greater Melbourne residents, by location--a telephone survey.
    Rolls DA; Geard NL; Warr DJ; Nathan PM; Robins GL; Pattison PE; McCaw JM; McVernon J
    BMC Infect Dis; 2015 Nov; 15():494. PubMed ID: 26525046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Household and community transmission parameters from final distributions of infections in households.
    Longini IM; Koopman JS
    Biometrics; 1982 Mar; 38(1):115-26. PubMed ID: 7082755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.