These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30963910)

  • 41. The French Connection: The First Large Population-Based Contact Survey in France Relevant for the Spread of Infectious Diseases.
    Béraud G; Kazmercziak S; Beutels P; Levy-Bruhl D; Lenne X; Mielcarek N; Yazdanpanah Y; Boëlle PY; Hens N; Dervaux B
    PLoS One; 2015; 10(7):e0133203. PubMed ID: 26176549
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Models of epidemics: when contact repetition and clustering should be included.
    Smieszek T; Fiebig L; Scholz RW
    Theor Biol Med Model; 2009 Jun; 6():11. PubMed ID: 19563624
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epidemic spreading in networks with nonrandom long-range interactions.
    Estrada E; Kalala-Mutombo F; Valverde-Colmeiro A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036110. PubMed ID: 22060459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of a stochastic SIR epidemic on a random network incorporating household structure.
    Ball F; Sirl D; Trapman P
    Math Biosci; 2010 Apr; 224(2):53-73. PubMed ID: 20005881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Social encounter networks: characterizing Great Britain.
    Danon L; Read JM; House TA; Vernon MC; Keeling MJ
    Proc Biol Sci; 2013 Aug; 280(1765):20131037. PubMed ID: 23804621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analyzing the demographic, spatial, and temporal factors influencing social contact patterns in U.S. and implications for infectious disease spread.
    Dorélien AM; Ramen A; Swanson I; Hill R
    BMC Infect Dis; 2021 Sep; 21(1):1009. PubMed ID: 34579645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Household demographic determinants of Ebola epidemic risk.
    Adams B
    J Theor Biol; 2016 Mar; 392():99-106. PubMed ID: 26718863
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contact tracing.
    Kiss IZ; Green DM; Kao RR
    J R Soc Interface; 2008 Jul; 5(24):791-9. PubMed ID: 18055417
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stochastic SIR epidemics in a population with households and schools.
    Ouboter T; Meester R; Trapman P
    J Math Biol; 2016 Apr; 72(5):1177-93. PubMed ID: 26070348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network.
    Hoen AG; Hladish TJ; Eggo RM; Lenczner M; Brownstein JS; Meyers LA
    J Med Internet Res; 2015 Jul; 17(7):e169. PubMed ID: 26156032
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Household epidemic models with varying infection response.
    Ball F; Britton T; Sirl D
    J Math Biol; 2011 Aug; 63(2):309-37. PubMed ID: 20981427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inferring high-resolution human mixing patterns for disease modeling.
    Mistry D; Litvinova M; Pastore Y Piontti A; Chinazzi M; Fumanelli L; Gomes MFC; Haque SA; Liu QH; Mu K; Xiong X; Halloran ME; Longini IM; Merler S; Ajelli M; Vespignani A
    Nat Commun; 2021 Jan; 12(1):323. PubMed ID: 33436609
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring human mixing patterns based on time use and social contact data and their implications for infectious disease transmission models.
    Hoang TV; Willem L; Coletti P; Van Kerckhove K; Minnen J; Beutels P; Hens N
    BMC Infect Dis; 2022 Dec; 22(1):954. PubMed ID: 36536314
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Household structure and infectious disease transmission.
    House T; Keeling MJ
    Epidemiol Infect; 2009 May; 137(5):654-61. PubMed ID: 18840319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Online respondent-driven sampling for studying contact patterns relevant for the spread of close-contact pathogens: a pilot study in Thailand.
    Stein ML; van Steenbergen JE; Chanyasanha C; Tipayamongkholgul M; Buskens V; van der Heijden PG; Sabaiwan W; Bengtsson L; Lu X; Thorson AE; Kretzschmar ME
    PLoS One; 2014; 9(1):e85256. PubMed ID: 24416371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatiotemporal heterogeneity of social contact patterns related to infectious diseases in the Guangdong Province, China.
    Huang Y; Cai X; Zhang B; Zhu G; Liu T; Guo P; Xiao J; Li X; Zeng W; Hu J; Ma W
    Sci Rep; 2020 Apr; 10(1):6119. PubMed ID: 32296083
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Incorporating population dynamics into household models of infectious disease transmission.
    Glass K; McCaw JM; McVernon J
    Epidemics; 2011 Sep; 3(3-4):152-8. PubMed ID: 22094338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Indigenous Australian household structure: a simple data collection tool and implications for close contact transmission of communicable diseases.
    Vino T; Singh GR; Davison B; Campbell PT; Lydeamore MJ; Robinson A; McVernon J; Tong SYC; Geard N
    PeerJ; 2017; 5():e3958. PubMed ID: 29085755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spread of infectious disease through clustered populations.
    Miller JC
    J R Soc Interface; 2009 Dec; 6(41):1121-34. PubMed ID: 19324673
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calculation of disease dynamics in a population of households.
    Ross JV; House T; Keeling MJ
    PLoS One; 2010 Mar; 5(3):e9666. PubMed ID: 20305791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.