These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30963917)

  • 1. Disruptive coloration and binocular disparity: breaking camouflage.
    Adams WJ; Graf EW; Anderson M
    Proc Biol Sci; 2019 Feb; 286(1896):20182045. PubMed ID: 30963917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.
    Egan J; Sharman RJ; Scott-Brown KC; Lovell PG
    Sci Rep; 2016 Dec; 6():38274. PubMed ID: 27922058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruptive camouflage impairs object recognition.
    Webster RJ; Hassall C; Herdman CM; Godin JG; Sherratt TN
    Biol Lett; 2013; 9(6):20130501. PubMed ID: 24152693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying camouflage: how to predict detectability from appearance.
    Troscianko J; Skelhorn J; Stevens M
    BMC Evol Biol; 2017 Jan; 17(1):7. PubMed ID: 28056761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruptive coloration provides camouflage independent of background matching.
    Schaefer HM; Stobbe N
    Proc Biol Sci; 2006 Oct; 273(1600):2427-32. PubMed ID: 16959631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Camouflage using three-dimensional surface disruption.
    King J; Hemmi JM; Kelley JL
    Biol Lett; 2023 Aug; 19(8):20220596. PubMed ID: 37528728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociating the effect of disruptive colouration on localisation and identification of camouflaged targets.
    Sharman RJ; Moncrieff SJ; Lovell PG
    Sci Rep; 2018 Apr; 8(1):6599. PubMed ID: 29700366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruptive coloration, crypsis and edge detection in early visual processing.
    Stevens M; Cuthill IC
    Proc Biol Sci; 2006 Sep; 273(1598):2141-7. PubMed ID: 16901833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pictorial depth cues, binocular disparity cues and motion parallax depth cues on lightness perception in three-dimensional virtual scenes.
    Kitazaki M; Kobiki H; Maloney LT
    PLoS One; 2008 Sep; 3(9):e3177. PubMed ID: 18781201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruptive coloration elicited on controlled natural substrates in cuttlefish, Sepia officinalis.
    Mäthger LM; Chiao CC; Barbosa A; Buresch KC; Kaye S; Hanlon RT
    J Exp Biol; 2007 Aug; 210(Pt 15):2657-66. PubMed ID: 17644680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual perception and camouflage response to 3D backgrounds and cast shadows in the European cuttlefish, Sepia officinalis.
    El Nagar A; Osorio D; Zylinski S; Sait SM
    J Exp Biol; 2021 Jun; 224(11):. PubMed ID: 34109984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effectiveness of disruptive coloration as a concealment strategy.
    Stevens M; Cuthill IC; Alejandro Párraga C; Troscianko T
    Prog Brain Res; 2006; 155():49-64. PubMed ID: 17027379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruptive contrast in animal camouflage.
    Stevens M; Cuthill IC; Windsor AM; Walker HJ
    Proc Biol Sci; 2006 Oct; 273(1600):2433-8. PubMed ID: 16959632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration.
    Hanlon RT; Chiao CC; Mäthger LM; Barbosa A; Buresch KC; Chubb C
    Philos Trans R Soc Lond B Biol Sci; 2009 Feb; 364(1516):429-37. PubMed ID: 19008200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Camouflage strategies interfere differently with observer search images.
    Troscianko J; Skelhorn J; Stevens M
    Proc Biol Sci; 2018 Sep; 285(1886):. PubMed ID: 30185636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.
    Seymoure BM; Aiello A
    J Evol Biol; 2015 Sep; 28(9):1618-24. PubMed ID: 26109438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outline and surface disruption in animal camouflage.
    Stevens M; Winney IS; Cantor A; Graham J
    Proc Biol Sci; 2009 Feb; 276(1657):781-6. PubMed ID: 19019788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruptive coloration and background pattern matching.
    Cuthill IC; Stevens M; Sheppard J; Maddocks T; Párraga CA; Troscianko TS
    Nature; 2005 Mar; 434(7029):72-4. PubMed ID: 15744301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining disruptive coloration and distinguishing its functions.
    Stevens M; Merilaita S
    Philos Trans R Soc Lond B Biol Sci; 2009 Feb; 364(1516):481-8. PubMed ID: 18990673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shading Beats Binocular Disparity in Depth from Luminance Gradients: Evidence against a Maximum Likelihood Principle for Cue Combination.
    Chen CC; Tyler CW
    PLoS One; 2015; 10(8):e0132658. PubMed ID: 26258494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.