BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30963929)

  • 1. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp.
    Qiu Z; Coleman MA; Provost E; Campbell AH; Kelaher BP; Dalton SJ; Thomas T; Steinberg PD; Marzinelli EM
    Proc Biol Sci; 2019 Feb; 286(1896):20181887. PubMed ID: 30963929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of marine heatwaves and warming on kelp microbiota influence trophic interactions.
    Castro LC; Vergés A; Straub SC; Campbell AH; Coleman MA; Wernberg T; Steinberg P; Thomas T; Dworjanyn S; Cetina-Heredia P; Roughan M; Marzinelli EM
    Mol Ecol; 2024 Mar; 33(5):e17267. PubMed ID: 38230446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invasion-mediated effects on marine trophic interactions in a changing climate: positive feedbacks favour kelp persistence.
    Miranda RJ; Coleman MA; Tagliafico A; Rangel MS; Mamo LT; Barros F; Kelaher BP
    Proc Biol Sci; 2019 Mar; 286(1899):20182866. PubMed ID: 30900532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remnant kelp bed refugia and future phase-shifts under ocean acidification.
    Ling SD; Cornwall CE; Tilbrook B; Hurd CL
    PLoS One; 2020; 15(10):e0239136. PubMed ID: 33035224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cool-edge populations of the kelp
    Britton D; Layton C; Mundy CN; Brewer EA; Gaitán-Espitia JD; Beardall J; Raven JA; Hurd CL
    Proc Biol Sci; 2024 Jan; 291(2015):20232253. PubMed ID: 38228502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata.
    Britton D; Cornwall CE; Revill AT; Hurd CL; Johnson CR
    Sci Rep; 2016 May; 6():26036. PubMed ID: 27229624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats.
    Benítez S; Navarro JM; Mardones D; Villanueva PA; Ramirez-Kushel F; Torres R; Lagos NA
    Mar Pollut Bull; 2023 Oct; 195():115549. PubMed ID: 37729690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prokaryotic and eukaryotic microbiome of Pacific oyster spat is shaped by ocean warming but not acidification.
    Zhong KX; Chan AM; Collicutt B; Daspe M; Finke JF; Foss M; Green TJ; Harley CDG; Hesketh AV; Miller KM; Otto SP; Rolheiser K; Saunders R; Sutherland BJG; Suttle CA
    Appl Environ Microbiol; 2024 Apr; 90(4):e0005224. PubMed ID: 38466091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate-driven disparities among ecological interactions threaten kelp forest persistence.
    Provost EJ; Kelaher BP; Dworjanyn SA; Russell BD; Connell SD; Ghedini G; Gillanders BM; Figueira W; Coleman MA
    Glob Chang Biol; 2017 Jan; 23(1):353-361. PubMed ID: 27392308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tropicalization strengthens consumer pressure on habitat-forming seaweeds.
    Zarco-Perello S; Wernberg T; Langlois TJ; Vanderklift MA
    Sci Rep; 2017 Apr; 7(1):820. PubMed ID: 28400614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption.
    Minich JJ; Morris MM; Brown M; Doane M; Edwards MS; Michael TP; Dinsdale EA
    PLoS One; 2018; 13(2):e0192772. PubMed ID: 29474389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simplification, not "tropicalization", of temperate marine ecosystems under ocean warming and acidification.
    Agostini S; Harvey BP; Milazzo M; Wada S; Kon K; Floc'h N; Komatsu K; Kuroyama M; Hall-Spencer JM
    Glob Chang Biol; 2021 Oct; 27(19):4771-4784. PubMed ID: 34268836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ocean warming and species range shifts affect rates of ecosystem functioning by altering consumer-resource interactions.
    Gilson AR; Smale DA; O'Connor N
    Ecology; 2021 May; 102(5):e03341. PubMed ID: 33709407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projecting kelp (Ecklonia radiata) gametophyte thermal adaptation and persistence under climate change.
    Veenhof RJ; Champion C; Dworjanyn SA; Schwoerbel J; Visch W; Coleman MA
    Ann Bot; 2024 Mar; 133(1):153-168. PubMed ID: 37665952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence of seaweed forests in the anthropocene will depend on warming and marine heatwave profiles.
    Straub SC; Wernberg T; Marzinelli EM; Vergés A; Kelaher BP; Coleman MA
    J Phycol; 2022 Feb; 58(1):22-35. PubMed ID: 34800039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seagrass Thalassia hemprichii and associated bacteria co-response to the synergistic stress of ocean warming and ocean acidification.
    Zhang J; Yang Q; Yue W; Yang B; Zhou W; Chen L; Huang X; Zhang W; Dong J; Ling J
    Environ Res; 2023 Nov; 236(Pt 1):116658. PubMed ID: 37454799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of ocean warming on kelp forest ecosystems.
    Smale DA
    New Phytol; 2020 Feb; 225(4):1447-1454. PubMed ID: 31400287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coastal urbanisation affects microbial communities on a dominant marine holobiont.
    Marzinelli EM; Qiu Z; Dafforn KA; Johnston EL; Steinberg PD; Mayer-Pinto M
    NPJ Biofilms Microbiomes; 2018; 4():1. PubMed ID: 29367878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean acidification increases iodine accumulation in kelp-based coastal food webs.
    Xu D; Brennan G; Xu L; Zhang XW; Fan X; Han WT; Mock T; McMinn A; Hutchins DA; Ye N
    Glob Chang Biol; 2019 Feb; 25(2):629-639. PubMed ID: 30295390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate refugia for kelp within an ocean warming hotspot revealed by stacked species distribution modelling.
    Davis TR; Champion C; Coleman MA
    Mar Environ Res; 2021 Apr; 166():105267. PubMed ID: 33601331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.