These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 30963929)
61. Sensitivities to global change drivers may correlate positively or negatively in a foundational marine macroalga. Al-Janabi B; Wahl M; Karsten U; Graiff A; Kruse I Sci Rep; 2019 Oct; 9(1):14653. PubMed ID: 31601889 [TBL] [Abstract][Full Text] [Related]
62. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography. Marzinelli EM; Campbell AH; Zozaya Valdes E; Vergés A; Nielsen S; Wernberg T; de Bettignies T; Bennett S; Caporaso JG; Thomas T; Steinberg PD Environ Microbiol; 2015 Oct; 17(10):4078-88. PubMed ID: 26148974 [TBL] [Abstract][Full Text] [Related]
63. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. Popova E; Yool A; Byfield V; Cochrane K; Coward AC; Salim SS; Gasalla MA; Henson SA; Hobday AJ; Pecl GT; Sauer WH; Roberts MJ Glob Chang Biol; 2016 Jun; 22(6):2038-53. PubMed ID: 26855008 [TBL] [Abstract][Full Text] [Related]
64. Predictable patterns within the kelp forest can indirectly create temporary refugia from ocean acidification. Bednaršek N; Pelletier G; Beck MW; Feely RA; Siegrist Z; Kiefer D; Davis J; Peabody B Sci Total Environ; 2024 Oct; 945():174065. PubMed ID: 38897470 [TBL] [Abstract][Full Text] [Related]
65. Ocean warming and acidification degrade shoaling performance and lateralization of novel tropical-temperate fish shoals. Mitchell A; Booth DJ; Nagelkerken I Glob Chang Biol; 2022 Feb; 28(4):1388-1401. PubMed ID: 34918444 [TBL] [Abstract][Full Text] [Related]
67. Adverse Environmental Perturbations May Threaten Kelp Farming Sustainability by Exacerbating Enterobacterales Diseases. Zhang Y; Nair S; Zhang Z; Zhao J; Zhao H; Lu L; Chang L; Jiao N Environ Sci Technol; 2024 Apr; 58(13):5796-5810. PubMed ID: 38507562 [TBL] [Abstract][Full Text] [Related]
68. Coral physiology and microbiome dynamics under combined warming and ocean acidification. Grottoli AG; Dalcin Martins P; Wilkins MJ; Johnston MD; Warner ME; Cai WJ; Melman TF; Hoadley KD; Pettay DT; Levas S; Schoepf V PLoS One; 2018; 13(1):e0191156. PubMed ID: 29338021 [TBL] [Abstract][Full Text] [Related]
69. Vulnerability of Tritia reticulata (L.) early life stages to ocean acidification and warming. Oliveira IB; Freitas DB; Fonseca JG; Laranjeiro F; Rocha RJM; Hinzmann M; Machado J; Barroso CM; Galante-Oliveira S Sci Rep; 2020 Mar; 10(1):5325. PubMed ID: 32210337 [TBL] [Abstract][Full Text] [Related]
70. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Wernberg T; Thomsen MS; Tuya F; Kendrick GA; Staehr PA; Toohey BD Ecol Lett; 2010 Jun; 13(6):685-94. PubMed ID: 20412279 [TBL] [Abstract][Full Text] [Related]
71. Long photoperiods sustain high pH in Arctic kelp forests. Krause-Jensen D; Marbà N; Sanz-Martin M; Hendriks IE; Thyrring J; Carstensen J; Sejr MK; Duarte CM Sci Adv; 2016 Dec; 2(12):e1501938. PubMed ID: 27990490 [TBL] [Abstract][Full Text] [Related]
72. Productivity of mixed kelp communities in an Arctic fjord exhibit tolerance to a future climate. Miller CA; Gazeau F; Lebrun A; Gattuso JP; Alliouane S; Urrutti P; Schlegel RW; Comeau S Sci Total Environ; 2024 Jun; 930():172571. PubMed ID: 38663592 [TBL] [Abstract][Full Text] [Related]
73. Host genotype and microbiome associations in co-occurring clonal and non-clonal kelp, Ecklonia radiata. Vadillo Gonzalez S; Vranken S; Coleman MA; Wernberg T; Steinberg PD; Marzinelli EM Mol Ecol; 2023 Aug; 32(16):4584-4598. PubMed ID: 37332135 [TBL] [Abstract][Full Text] [Related]
74. Artificial structures alter kelp functioning across an urbanised estuary. Mayer-Pinto M; Dafforn KA; Bugnot AB; Glasby TM; Johnston EL Mar Environ Res; 2018 Aug; 139():136-143. PubMed ID: 29778444 [TBL] [Abstract][Full Text] [Related]
75. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Assis J; Araújo MB; Serrão EA Glob Chang Biol; 2018 Jan; 24(1):e55-e66. PubMed ID: 28710898 [TBL] [Abstract][Full Text] [Related]
76. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Ling SD; Johnson CR; Frusher SD; Ridgway KR Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22341-5. PubMed ID: 20018706 [TBL] [Abstract][Full Text] [Related]
77. Climate change does not affect the seafood quality of a commonly targeted fish. Coleman MA; Butcherine P; Kelaher BP; Broadhurst MK; March DT; Provost EJ; David J; Benkendorff K Glob Chang Biol; 2019 Feb; 25(2):699-707. PubMed ID: 30414338 [TBL] [Abstract][Full Text] [Related]
78. Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification. Voss R; Quaas MF; Stiasny MH; Hänsel M; Stecher Justiniano Pinto GA; Lehmann A; Reusch TBH; Schmidt JO J Environ Manage; 2019 May; 238():110-118. PubMed ID: 30849595 [TBL] [Abstract][Full Text] [Related]
79. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Dworjanyn SA; Byrne M Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29643209 [TBL] [Abstract][Full Text] [Related]
80. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. García E; Clemente S; Hernández JC Mar Environ Res; 2015 Sep; 110():61-8. PubMed ID: 26275754 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]