These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30963935)

  • 1. Inferring the model and onset of natural selection under varying population size from the site frequency spectrum and haplotype structure.
    Nakagome S; Hudson RR; Di Rienzo A
    Proc Biol Sci; 2019 Feb; 286(1896):20182541. PubMed ID: 30963935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of skin pigmentation-associated variation in West Eurasia.
    Ju D; Mathieson I
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Inference of Natural Selection from Allele Frequency Time Series.
    Schraiber JG; Evans SN; Slatkin M
    Genetics; 2016 May; 203(1):493-511. PubMed ID: 27010022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the age of a fixed beneficial allele.
    Ormond L; Foll M; Ewing GB; Pfeifer SP; Jensen JD
    Mol Ecol; 2016 Jan; 25(1):157-69. PubMed ID: 26576754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the Ages of Selection Signals from Different Epochs in Human History.
    Nakagome S; Alkorta-Aranburu G; Amato R; Howie B; Peter BM; Hudson RR; Di Rienzo A
    Mol Biol Evol; 2016 Mar; 33(3):657-69. PubMed ID: 26545921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting and Quantifying Natural Selection at Two Linked Loci from Time Series Data of Allele Frequencies with Forward-in-Time Simulations.
    He Z; Dai X; Beaumont M; Yu F
    Genetics; 2020 Oct; 216(2):521-541. PubMed ID: 32826299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the spatiotemporal spread of beneficial alleles using ancient genomes.
    Muktupavela RA; Petr M; Ségurel L; Korneliussen T; Novembre J; Racimo F
    Elife; 2022 Dec; 11():. PubMed ID: 36537881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data.
    Foll M; Shim H; Jensen JD
    Mol Ecol Resour; 2015 Jan; 15(1):87-98. PubMed ID: 24834845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hidden Markov model for investigating recent positive selection through haplotype structure.
    Chen H; Hey J; Slatkin M
    Theor Popul Biol; 2015 Feb; 99():18-30. PubMed ID: 25446961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring Allele Frequency Trajectories from Ancient DNA Indicates That Selection on a Chicken Gene Coincided with Changes in Medieval Husbandry Practices.
    Loog L; Thomas MG; Barnett R; Allen R; Sykes N; Paxinos PD; Lebrasseur O; Dobney K; Peters J; Manica A; Larson G; Eriksson A
    Mol Biol Evol; 2017 Aug; 34(8):1981-1990. PubMed ID: 28444234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The timing of pigmentation lightening in Europeans.
    Beleza S; Santos AM; McEvoy B; Alves I; Martinho C; Cameron E; Shriver MD; Parra EJ; Rocha J
    Mol Biol Evol; 2013 Jan; 30(1):24-35. PubMed ID: 22923467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring the timing and strength of natural selection and gene migration in the evolution of chicken from ancient DNA data.
    Lyu W; Dai X; Beaumont M; Yu F; He Z
    Mol Ecol Resour; 2022 May; 22(4):1362-1379. PubMed ID: 34783162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y.
    Wilde S; Timpson A; Kirsanow K; Kaiser E; Kayser M; Unterländer M; Hollfelder N; Potekhina ID; Schier W; Thomas MG; Burger J
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4832-7. PubMed ID: 24616518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MC1R diversity in Northern Island Melanesia has not been constrained by strong purifying selection and cannot explain pigmentation phenotype variation in the region.
    Norton HL; Werren E; Friedlaender J
    BMC Genet; 2015 Oct; 16():122. PubMed ID: 26482799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data.
    Stern AJ; Wilton PR; Nielsen R
    PLoS Genet; 2019 Sep; 15(9):e1008384. PubMed ID: 31518343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing between selective sweeps from standing variation and from a de novo mutation.
    Peter BM; Huerta-Sanchez E; Nielsen R
    PLoS Genet; 2012; 8(10):e1003011. PubMed ID: 23071458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A haplotype method detects diverse scenarios of local adaptation from genomic sequence variation.
    Lange JD; Pool JE
    Mol Ecol; 2016 Jul; 25(13):3081-100. PubMed ID: 27135633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Approximate Bayesian Computation for inferring recent demographic history with genomic markers in nonmodel species.
    Elleouet JS; Aitken SN
    Mol Ecol Resour; 2018 May; 18(3):525-540. PubMed ID: 29356336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal diversity of positive selection on shared haplotypes at the PSCA locus among worldwide human populations.
    Iwasaki RL; Satta Y
    Heredity (Edinb); 2023 Aug; 131(2):156-169. PubMed ID: 37353592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach.
    Boitard S; Rodríguez W; Jay F; Mona S; Austerlitz F
    PLoS Genet; 2016 Mar; 12(3):e1005877. PubMed ID: 26943927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.