BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30964022)

  • 1. Biocompatible biodegradable polycaprolactone/basil seed mucilage scaffold for cell culture.
    Allafchian AR; Jalali SAH; Mousavi SE
    IET Nanobiotechnol; 2018 Dec; 12(8):1108-1113. PubMed ID: 30964022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage.
    Allafchian A; Jalali SAH; Mousavi SE; Hosseini SS
    Int J Biol Macromol; 2020 Jul; 155():1270-1276. PubMed ID: 31726121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of electrospun cell culture scaffolds made from balangu seed mucilage/PVA composites.
    Allafchian A; Saeedi S; Jalali SAH
    Nanotechnology; 2021 Nov; 33(7):. PubMed ID: 34757957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization.
    Kurd F; Fathi M; Shekarchizadeh H
    Int J Biol Macromol; 2017 Feb; 95():689-695. PubMed ID: 27919814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment.
    Vaikkath D; Anitha R; Sumathy B; Nair PD
    Colloids Surf B Biointerfaces; 2016 May; 141():112-119. PubMed ID: 26848946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering.
    Pedram Rad Z; Mokhtari J; Abbasi M
    Int J Biol Macromol; 2019 Aug; 135():530-543. PubMed ID: 31152839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications.
    Sreerekha PR; Menon D; Nair SV; Chennazhi KP
    J Biomed Nanotechnol; 2013 May; 9(5):790-800. PubMed ID: 23802408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.
    He FL; Li DW; He J; Liu YY; Ahmad F; Liu YL; Deng X; Ye YJ; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():18-27. PubMed ID: 29525092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development, modification and characterization of new biodegradable film from basil seed (Ocimum basilicum L.) mucilage.
    Thessrimuang N; Prachayawarakorn J
    J Sci Food Agric; 2019 Sep; 99(12):5508-5515. PubMed ID: 31099416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineered plant extracts as nanofibrous wound dressing.
    Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S
    Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells.
    Burton TP; Corcoran A; Callanan A
    Biomed Mater; 2017 Nov; 13(1):015006. PubMed ID: 29165317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.
    Lee SH; Cho YS; Hong MW; Lee BK; Park Y; Park SH; Kim YY; Cho YS
    Biomed Mater; 2017 Sep; 12(5):055003. PubMed ID: 28762959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering.
    Reddy CS; Venugopal JR; Ramakrishna S; Zussman E
    J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering.
    Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC
    Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity.
    Entekhabi E; Haghbin Nazarpak M; Moztarzadeh F; Sadeghi A
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():380-7. PubMed ID: 27612726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of zein and Shuanghuangbu for periodontal tissue engineering.
    Yan-Zhi X; Jing-Jing W; Chen YP; Liu J; Li N; Yang FY
    Int J Oral Sci; 2010 Sep; 2(3):142-8. PubMed ID: 21125792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering.
    Pedram Rad Z; Mokhtari J; Abbasi M
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():356-366. PubMed ID: 30274067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes.
    Izadyari Aghmiuni A; Heidari Keshel S; Sefat F; Akbarzadeh Khiyavi A
    Int J Biol Macromol; 2020 Jan; 142():668-679. PubMed ID: 31622718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.