These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30964595)

  • 1. Molecular-Dynamics-Simulation-Directed Rational Design of Nanoreceptors with Targeted Affinity.
    Sun X; Riccardi L; De Biasi F; Rastrelli F; De Vivo M; Mancin F
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7702-7707. PubMed ID: 30964595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Recognition by Gold Nanoparticle-Based Receptors as Defined through Surface Morphology and Pockets Fingerprint.
    Riccardi L; Decherchi S; Rocchia W; Zanoni G; Cavalli A; Mancin F; De Vivo M
    J Phys Chem Lett; 2021 Jun; 12(23):5616-5622. PubMed ID: 34110174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective.
    De Biasi F; Mancin F; Rastrelli F
    Prog Nucl Magn Reson Spectrosc; 2020 Apr; 117():70-88. PubMed ID: 32471535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition.
    Riccardi L; Gabrielli L; Sun X; De Biasi F; Rastrelli F; Mancin F; De Vivo M
    Chem; 2017 Jul; 3(1):92-109. PubMed ID: 28770257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and identification of designer drugs by nanoparticle-based NMR chemosensing.
    Gabrielli L; Rosa-Gastaldo D; Salvia MV; Springhetti S; Rastrelli F; Mancin F
    Chem Sci; 2018 Jun; 9(21):4777-4784. PubMed ID: 29910928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensor arrays made by self-organized nanoreceptors for detection and discrimination of carboxylate drugs.
    Sun X; Liu P; Mancin F
    Analyst; 2018 Nov; 143(23):5754-5763. PubMed ID: 30334044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nanoreceptors for high sensitivity detection of small molecules by NMR chemosensing.
    De Biasi F; Rosa-Gastaldo D; Mancin F; Rastrelli F
    Chem Commun (Camb); 2021 Mar; 57(24):3002-3005. PubMed ID: 33623940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Sensing Strategies Based on Monolayer Protected Gold Nanoparticles for the Detection of Metal Ions and Small Molecules.
    Ertem E; Diez-Castellnou M; Ong QK; Stellacci F
    Chem Rec; 2018 Jul; 18(7-8):819-828. PubMed ID: 29251809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turning Supramolecular Receptors into Chemosensors by Nanoparticle-Assisted "NMR Chemosensing".
    Salvia MV; Salassa G; Rastrelli F; Mancin F
    J Am Chem Soc; 2015 Sep; 137(35):11399-406. PubMed ID: 26313932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-Assisted NMR Spectroscopy: Enhanced Detection of Analytes by Water-Mediated Saturation Transfer.
    De Biasi F; Rosa-Gastaldo D; Sun X; Mancin F; Rastrelli F
    J Am Chem Soc; 2019 Mar; 141(12):4870-4877. PubMed ID: 30784278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature.
    Lin J; Zhang H; Morovati V; Dargazany R
    J Colloid Interface Sci; 2017 Oct; 504():325-333. PubMed ID: 28554138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-Assisted Affinity NMR Spectroscopy: High Sensitivity Detection and Identification of Organic Molecules.
    Diez-Castellnou M; Salvia MV; Springhetti S; Rastrelli F; Mancin F
    Chemistry; 2016 Nov; 22(47):16957-16963. PubMed ID: 27723145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.
    Shao Q; Hall CK
    Langmuir; 2016 Aug; 32(31):7888-96. PubMed ID: 27420555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules.
    Zheng M; Li Z; Huang X
    Langmuir; 2004 May; 20(10):4226-35. PubMed ID: 15969421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding.
    Paramelle D; Peng T; Free P; Fernig DG; Lim S; Tomczak N
    PLoS One; 2016; 11(9):e0162848. PubMed ID: 27622533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding interactions of functionalized nanoparticles with proteins: a case study on lactate dehydrogenase.
    Stueker O; Ortega VA; Goss GG; Stepanova M
    Small; 2014 May; 10(10):2006-21. PubMed ID: 24591162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing Helical Molecular Capsules Based on Folded Aromatic Amide Oligomers.
    Ferrand Y; Huc I
    Acc Chem Res; 2018 Apr; 51(4):970-977. PubMed ID: 29589916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolayer protected gold nanoparticles with metal-ion binding sites: functional systems for chemosensing applications.
    Pezzato C; Maiti S; Chen JL; Cazzolaro A; Gobbo C; Prins LJ
    Chem Commun (Camb); 2015 Jun; 51(49):9922-31. PubMed ID: 25947232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity of Glycine for Facets on Gold Nanoparticles.
    Shao Q; Hall CK
    J Phys Chem B; 2018 Apr; 122(13):3491-3499. PubMed ID: 29200301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of gold nanoparticles decorated with chitosan-gentamicin conjugates: ReaxFF molecular dynamics simulations to disclose drug delivery.
    Monti S; Jose J; Sahajan A; Kalarikkal N; Thomas S
    Phys Chem Chem Phys; 2019 Jun; 21(24):13099-13108. PubMed ID: 31169276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.