These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 30964606)
1. Axial bonds at the T1 Cu site of Thermus thermophilus SG0.5JP17-16 laccase influence enzymatic properties. Zhu Y; Zhang Y; Zhan J; Lin Y; Yang X FEBS Open Bio; 2019 May; 9(5):986-995. PubMed ID: 30964606 [TBL] [Abstract][Full Text] [Related]
2. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks. Liu H; Zhu Y; Yang X; Lin Y Appl Microbiol Biotechnol; 2018 May; 102(9):4049-4061. PubMed ID: 29516147 [TBL] [Abstract][Full Text] [Related]
3. The catalytic properties of Thermus thermophilus SG0.5JP17-16 laccase were regulated by the conformational dynamics of pocket loop 6. Zhang Y; Dai Z; Zhang S; Yang X Biochim Biophys Acta Gen Subj; 2021 Jun; 1865(6):129872. PubMed ID: 33588000 [TBL] [Abstract][Full Text] [Related]
4. The K428 residue from Zhu Y; Zhan J; Zhang Y; Lin Y; Yang X J Biomol Struct Dyn; 2021 Mar; 39(4):1312-1320. PubMed ID: 32056499 [TBL] [Abstract][Full Text] [Related]
5. Loops constructing the substrate-binding site controlled the catalytic efficiency of Thermus thermophilus SG0.5JP17-16 laccase. Zhan J; Sun H; Dai Z; Zhang Y; Yang X Biochimie; 2022 Sep; 200():60-67. PubMed ID: 35613666 [TBL] [Abstract][Full Text] [Related]
6. Mutations in the coordination spheres of T1 Cu affect Cu Clément R; Wang X; Biaso F; Ilbert M; Mazurenko I; Lojou E Biochimie; 2021 Mar; 182():228-237. PubMed ID: 33535124 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. Liu H; Cheng Y; Du B; Tong C; Liang S; Han S; Zheng S; Lin Y PLoS One; 2015; 10(3):e0119833. PubMed ID: 25790466 [TBL] [Abstract][Full Text] [Related]
8. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715 [TBL] [Abstract][Full Text] [Related]
9. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Durão P; Bento I; Fernandes AT; Melo EP; Lindley PF; Martins LO J Biol Inorg Chem; 2006 Jun; 11(4):514-26. PubMed ID: 16680453 [TBL] [Abstract][Full Text] [Related]
10. Expression, refolding, and characterization of a small laccase from Thermus thermophilus HJ6. Kim HW; Lee SY; Park H; Jeon SJ Protein Expr Purif; 2015 Oct; 114():37-43. PubMed ID: 26073095 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical properties and temperature dependence of a recombinant laccase from Thermus thermophilus. Liu X; Gillespie M; Ozel AD; Dikici E; Daunert S; Bachas LG Anal Bioanal Chem; 2011 Jan; 399(1):361-6. PubMed ID: 21076916 [TBL] [Abstract][Full Text] [Related]
12. The β-hairpin from the Thermus thermophilus HB27 laccase works as a pH-dependent switch to regulate laccase activity. Miranda-Blancas R; Avelar M; Rodriguez-Arteaga A; Sinicropi A; Rudiño-Piñera E J Struct Biol; 2021 Jun; 213(2):107740. PubMed ID: 33962016 [TBL] [Abstract][Full Text] [Related]
13. Correlation between the T1 copper reduction potential and catalytic activity of a small laccase. Olbrich AC; Schild JN; Urlacher VB J Inorg Biochem; 2019 Dec; 201():110843. PubMed ID: 31536948 [TBL] [Abstract][Full Text] [Related]
14. The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2). Prins A; Kleinsmidt L; Khan N; Kirby B; Kudanga T; Vollmer J; Pleiss J; Burton S; Le Roes-Hill M Enzyme Microb Technol; 2015 Jan; 68():23-32. PubMed ID: 25435502 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement. Nasoohi N; Khajeh K; Mohammadian M; Ranjbar B Int J Biol Macromol; 2013 Sep; 60():56-61. PubMed ID: 23707861 [TBL] [Abstract][Full Text] [Related]
16. Proximal mutations at the type 1 copper site of CotA laccase: spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants. Durão P; Chen Z; Silva CS; Soares CM; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Biochem J; 2008 Jun; 412(2):339-46. PubMed ID: 18307408 [TBL] [Abstract][Full Text] [Related]
17. Effect of the L499M mutation of the ascomycetous Botrytis aclada laccase on redox potential and catalytic properties. Osipov E; Polyakov K; Kittl R; Shleev S; Dorovatovsky P; Tikhonova T; Hann S; Ludwig R; Popov V Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2913-23. PubMed ID: 25372682 [TBL] [Abstract][Full Text] [Related]
18. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus. Gunne M; Höppner A; Hagedoorn PL; Urlacher VB FEBS J; 2014 Sep; 281(18):4307-18. PubMed ID: 24548692 [TBL] [Abstract][Full Text] [Related]
19. Insight into stability of CotA laccase from the spore coat of Bacillus subtilis. Melo EP; Fernandes AT; Durão P; Martins LO Biochem Soc Trans; 2007 Dec; 35(Pt 6):1579-82. PubMed ID: 18031270 [TBL] [Abstract][Full Text] [Related]
20. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Sakurai T; Kataoka K Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]