These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30964637)

  • 1. One-Dimensional Programmable Polymeric Microfiber Waveguide with Optically Reconfigurable Photonic Functions.
    Xia H; Cheng J; Zhu L; Xie K; Zhang Q; Zhang D; Zou G
    ACS Appl Mater Interfaces; 2019 May; 11(17):15969-15976. PubMed ID: 30964637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced Tunable and Reconfigurable Electronic and Photonic Devices Using a Silk-Based Diffractive Optics Platform.
    Cai X; Zhou Z; Tao TH
    Adv Sci (Weinh); 2020 Jul; 7(14):2000475. PubMed ID: 32714758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.
    Zhang W; Yao J
    Nat Commun; 2018 Apr; 9(1):1396. PubMed ID: 29643383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances of the Polymer Micro/Nanofiber Fluorescence Waveguide.
    Xia H; Chen T; Hu C; Xie K
    Polymers (Basel); 2018 Sep; 10(10):. PubMed ID: 30961011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable optical assembly of nanostructures.
    Montelongo Y; Yetisen AK; Butt H; Yun SH
    Nat Commun; 2016 Jun; 7():12002. PubMed ID: 27337216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfigurable microfiber-coupled photonic crystal resonator.
    Kim MK; Hwang IK; Seo MK; Lee YH
    Opt Express; 2007 Dec; 15(25):17241-7. PubMed ID: 19551017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon nitride programmable photonic processor with folded heaters.
    Pérez-López D; Gutiérrez A; Capmany J
    Opt Express; 2021 Mar; 29(6):9043-9059. PubMed ID: 33820342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetically Tunable One-Dimensional Plasmonic Photonic Crystals.
    Wu C; Fan Q; Wu W; Liang T; Liu Y; Yu H; Yin Y
    Nano Lett; 2023 Mar; 23(5):1981-1988. PubMed ID: 36847818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Device-Level Photonic Memories and Logic Applications Using Phase-Change Materials.
    Cheng Z; Ríos C; Youngblood N; Wright CD; Pernice WHP; Bhaskaran H
    Adv Mater; 2018 Aug; 30(32):e1802435. PubMed ID: 29940084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.
    Zhuang L; Beeker W; Leinse A; Heideman R; van Dijk P; Roeloffzen C
    Opt Express; 2013 Feb; 21(3):3114-24. PubMed ID: 23481769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable and tunable flat graphene photonic crystal circuits.
    Chen ZH; Tan QL; Lao J; Liang Y; Huang XG
    Nanoscale; 2015 Jul; 7(25):10912-7. PubMed ID: 26061901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipurpose silicon photonics signal processor core.
    Pérez D; Gasulla I; Crudgington L; Thomson DJ; Khokhar AZ; Li K; Cao W; Mashanovich GZ; Capmany J
    Nat Commun; 2017 Sep; 8(1):636. PubMed ID: 28935924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater.
    Zheng J; Fang Z; Wu C; Zhu S; Xu P; Doylend JK; Deshmukh S; Pop E; Dunham S; Li M; Majumdar A
    Adv Mater; 2020 Aug; 32(31):e2001218. PubMed ID: 32588481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Photonic Devices Based on Optical Phase-Change Materials.
    Wang X; Qi H; Hu X; Yu Z; Ding S; Du Z; Gong Q
    Molecules; 2021 May; 26(9):. PubMed ID: 34068710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Programmable Terahertz Diatomic Metamolecules for Chiral Optical Control.
    Cong L; Pitchappa P; Wang N; Singh R
    Research (Wash D C); 2019; 2019():7084251. PubMed ID: 31549081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dynamically Reconfigurable Ambipolar Black Phosphorus Memory Device.
    Tian H; Deng B; Chin ML; Yan X; Jiang H; Han SJ; Sun V; Xia Q; Dubey M; Xia F; Wang H
    ACS Nano; 2016 Nov; 10(11):10428-10435. PubMed ID: 27794601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities.
    Chew X; Zhou G; Yu H; Chau FS; Deng J; Loke YC; Tang X
    Opt Express; 2010 Oct; 18(21):22232-44. PubMed ID: 20941125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications.
    Li YJ; Xiong X; Zou CL; Ren XF; Zhao YS
    Small; 2015 Aug; 11(31):3728-43. PubMed ID: 25963844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic waveguides for reconfigurable photonic systems.
    Chung AJ; Erickson D
    Opt Express; 2011 Apr; 19(9):8602-9. PubMed ID: 21643111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Complex Tunable Multispectral Signatures with Reconfigurable Protein-Based, Plasmonic-Photonic Crystal Hybrid Nanostructures.
    Wang Y; Kim BJ; Guidetti G; Omenetto FG
    Small; 2022 Jun; 18(22):e2201036. PubMed ID: 35527342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.