These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30964653)

  • 1. Dynamic Interaction between Host and Guest for Enantioselective Recognition: Application of β-Cyclodextrin-Based Charged Catenane As Electrochemical Probe.
    Wu D; Kong Y
    Anal Chem; 2019 May; 91(9):5961-5967. PubMed ID: 30964653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotaxane and catenane host structures for sensing charged guest species.
    Langton MJ; Beer PD
    Acc Chem Res; 2014 Jul; 47(7):1935-49. PubMed ID: 24708030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient enantiorecognition of amino acids under a stimuli-responsive system: synthesis, characterization and application of electroactive rotaxane.
    Wu D; Pan F; Fan GC; Zhu Z; Gao L; Tao Y; Kong Y
    Analyst; 2019 Nov; 144(21):6415-6421. PubMed ID: 31580336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrochemical chiral sensor based on competitive host-guest interaction for the discrimination of electroinactive amino acids.
    Jing P; Zhao C; Yin ZZ; Yang B; Li J; Cai W; Kong Y
    Analyst; 2022 Nov; 147(22):5068-5074. PubMed ID: 36200860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new dual-signalling electrochemical sensing strategy based on competitive host-guest interaction of a β-cyclodextrin/poly(N-acetylaniline)/graphene-modified electrode: sensitive electrochemical determination of organic pollutants.
    Zhu G; Wu L; Zhang X; Liu W; Zhang X; Chen J
    Chemistry; 2013 May; 19(20):6368-73. PubMed ID: 23520127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers.
    Xiao Q; Lu S; Huang C; Su W; Huang S
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective Limiting Transport into a Fixed Cavity via Supramolecular Interaction for the Chiral Electroanalysis of Amino Acids Regardless of Electroactive Units.
    Wu D; Pan F; Gao L; Tao Y; Kong Y
    Anal Chem; 2020 Oct; 92(20):13711-13717. PubMed ID: 32957775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral PEDOT-Based Enantioselective Electrode Modification Material for Chiral Electrochemical Sensing: Mechanism and Model of Chiral Recognition.
    Dong L; Zhang Y; Duan X; Zhu X; Sun H; Xu J
    Anal Chem; 2017 Sep; 89(18):9695-9702. PubMed ID: 28809103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile avenue to prepare chiral graphene sheets as electrode modification for electrochemical enantiorecognition.
    Wu D; Tan W; Yu Y; Yang B; Li H; Kong Y
    Anal Chim Acta; 2018 Nov; 1033():58-64. PubMed ID: 30172332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile route to prepare functional mesoporous organosilica spheres with electroactive units for chiral recognition of amino acids.
    Wu D; Tan W; Li H; Lei Z; Deng L; Kong Y
    Analyst; 2019 Jan; 144(2):543-549. PubMed ID: 30411759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II).
    Qian J; Yi Y; Zhang D; Zhu G
    Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies to Achieve a Ferrocene-Based Polymer with Reversible Redox Activity for Chiral Electroanalysis of Nonelectroactive Amino Acids.
    Wu D; Ma C; Pan F; Tao Y; Kong Y
    Anal Chem; 2021 Jul; 93(29):10160-10166. PubMed ID: 34255968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid).
    Tao Y; Dai J; Kong Y; Sha Y
    Anal Chem; 2014 Mar; 86(5):2633-9. PubMed ID: 24484527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based hybrid for enantioselective sensing applications.
    Zor E; Morales-Narváez E; Alpaydin S; Bingol H; Ersoz M; Merkoçi A
    Biosens Bioelectron; 2017 Jan; 87():410-416. PubMed ID: 27589404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange.
    Chen Q; Zhou J; Han Q; Wang Y; Fu Y
    Colloids Surf B Biointerfaces; 2012 Apr; 92():130-5. PubMed ID: 22169472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced host-guest electrochemical recognition of herbicide MCPA using a β-cyclodextrin carbon nanotube sensor.
    Rahemi V; Vandamme JJ; Garrido JM; Borges F; Brett CM; Garrido EM
    Talanta; 2012 Sep; 99():288-93. PubMed ID: 22967554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core-shell nanoparticles with adamantine-modified antibody.
    Gao J; Guo Z; Su F; Gao L; Pang X; Cao W; Du B; Wei Q
    Biosens Bioelectron; 2015 Jan; 63():465-471. PubMed ID: 25129508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical recognition for carboxylic acids based on multilayer architectures of β-cyclodextrin and methylene blue/reduce-graphene interface on glassy carbon electrodes.
    Han Q; Wang Y; Huang Y; Guo L; Fu Y
    Analyst; 2013 Apr; 138(7):2051-6. PubMed ID: 23392452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive electrochemical sensor based on β-cyclodextrin-gold@3, 4, 9, 10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin.
    Ran X; Yang L; Zhang J; Deng G; Li Y; Xie X; Zhao H; Li CP
    Anal Chim Acta; 2015 Sep; 892():85-94. PubMed ID: 26388478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.