BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30964654)

  • 21. Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing.
    Wu C; Cheng Q; Wu K; Wu G; Li Q
    Anal Chim Acta; 2014 May; 825():26-33. PubMed ID: 24767147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous metal-organic framework Cu
    Tian P; Liu D; Li K; Yang T; Wang J; Liu Y; Zhang S
    Bioresour Technol; 2017 Nov; 244(Pt 1):206-212. PubMed ID: 28779673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel electrochemical sensor for glyphosate detection based on Ti
    Wang S; Yao Y; Zhao J; Han X; Chai C; Dai P
    RSC Adv; 2022 Feb; 12(9):5164-5172. PubMed ID: 35425566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MOF-Derived Porous Ni
    Zhang Y; Xu J; Xia J; Zhang F; Wang Z
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39151-39160. PubMed ID: 30350939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application.
    Wang X; Wang Q; Wang Q; Gao F; Gao F; Yang Y; Guo H
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11573-80. PubMed ID: 25000168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine.
    Govindhan M; Amiri M; Chen A
    Biosens Bioelectron; 2015 Apr; 66():474-80. PubMed ID: 25499660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical sensing platform for tetrabromobisphenol A at pM level based on the synergetic enhancement effects of graphene and dioctadecyldimethylammonium bromide.
    Chen X; Wang Y; Tong J; Xia S; Zhou Y; Wu K
    Anal Chim Acta; 2016 Sep; 935():90-6. PubMed ID: 27543017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue.
    Wang Z; Wang J; Li M; Sun K; Liu CJ
    Sci Rep; 2014 Aug; 4():5939. PubMed ID: 25089616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MOF-Derived CuS@Cu-BTC Composites as High-Performance Anodes for Lithium-Ion Batteries.
    Wang P; Shen M; Zhou H; Meng C; Yuan A
    Small; 2019 Nov; 15(47):e1903522. PubMed ID: 31608560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite.
    Gupta A; Bhardwaj SK; Sharma AL; Kim KH; Deep A
    Environ Res; 2019 Apr; 171():395-402. PubMed ID: 30716516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of highly conjugated water-dispersible graphene-butyric acid for the enhancement of electron transfer within polyamic acid-benzoxazole: potential applications in electrochemical sensing.
    Chen HC; Chen YH; Chen SL; Chern YT; Tsai RY; Hua MY
    Biosens Bioelectron; 2013 Aug; 46():84-90. PubMed ID: 23517822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel approach for removing brominated flame retardant from aquatic environments using Cu/Fe-based metal-organic frameworks: A case of hexabromocyclododecane (HBCD).
    Li X; Liu H; Jia X; Li G; An T; Gao Y
    Sci Total Environ; 2018 Apr; 621():1533-1541. PubMed ID: 29054625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper-Organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction.
    Cho K; Han SH; Suh MP
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15301-15305. PubMed ID: 27774771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved Chloride Ion Sensing Performance of Flexible Ag-NPs/AgCl Electrode Sensor Using Cu-BTC as an Effective Adsorption Layer.
    Kwak B; Park S; Lee HS; Kim J; Yoo B
    Front Chem; 2019; 7():637. PubMed ID: 31616653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.
    Ping J; Wang Y; Fan K; Wu J; Ying Y
    Biosens Bioelectron; 2011 Oct; 28(1):204-9. PubMed ID: 21807494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oriented growth of cross-linked metal-organic framework film on graphene surface for non-enzymatic electrochemical sensor of hydrogen peroxide in disinfectant.
    Zhou Y; Li C; Hao Y; Ye B; Xu M
    Talanta; 2018 Oct; 188():282-287. PubMed ID: 30029377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition.
    Decoste JB; Peterson GW; Smith MW; Stone CA; Willis CR
    J Am Chem Soc; 2012 Jan; 134(3):1486-9. PubMed ID: 22239201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum.
    Ruiyi L; Ling L; Hongxia B; Zaijun L
    Biosens Bioelectron; 2016 May; 79():457-66. PubMed ID: 26745792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid Metal-Organic-Framework/Inorganic Nanocatalyst toward Highly Efficient Discoloration of Organic Dyes in Aqueous Medium.
    Iqbal K; Iqbal A; Kirillov AM; Liu W; Tang Y
    Inorg Chem; 2018 Nov; 57(21):13270-13278. PubMed ID: 30295473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.