BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30964999)

  • 1. Improved DFT Adsorption Energies with Semiempirical Dispersion Corrections.
    Mahlberg D; Sakong S; Forster-Tonigold K; Groß A
    J Chem Theory Comput; 2019 May; 15(5):3250-3259. PubMed ID: 30964999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assessment of density functionals for predicting CO
    Lee JH; Hyldgaard P; Neaton JB
    J Chem Phys; 2022 Apr; 156(15):154113. PubMed ID: 35459296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking the Accuracy of Density Functional Theory against the Random Phase Approximation for the Ethane Dehydrogenation Network on Pt(111).
    Szaro NA; Bello M; Fricke CH; Bamidele OH; Heyden A
    J Phys Chem Lett; 2023 Dec; 14(48):10769-10778. PubMed ID: 38011289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A density-functional theory-based neural network potential for water clusters including van der Waals corrections.
    Morawietz T; Behler J
    J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals.
    Marom N; Tkatchenko A; Rossi M; Gobre VV; Hod O; Scheffler M; Kronik L
    J Chem Theory Comput; 2011 Dec; 7(12):3944-51. PubMed ID: 26598340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the van der Waals interactions in the adsorption of anthracene and pentacene on the Ag(111) surface.
    Morbec JM; Kratzer P
    J Chem Phys; 2017 Jan; 146(3):034702. PubMed ID: 28109219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DFT-D study of structural and energetic properties of TiO2 modifications.
    Moellmann J; Ehrlich S; Tonner R; Grimme S
    J Phys Condens Matter; 2012 Oct; 24(42):424206. PubMed ID: 23032480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the bulk properties of ambient pressure polymorphs of zirconia.
    Delarmelina M; Quesne MG; Catlow CRA
    Phys Chem Chem Phys; 2020 Mar; 22(12):6660-6676. PubMed ID: 32159203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Dispersion Correction on the Adsorption of CO on Metallic Nanoparticles.
    Davis JB; Baletto F; Johnston RL
    J Phys Chem A; 2015 Sep; 119(37):9703-9. PubMed ID: 26320360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of Metal-Supported Metal-Nanoislands: A Comparison of DFT Methods.
    Vázquez-Lizardi GA; Ruiz-Casanova LA; Cruz-Sánchez RM; Santana JA
    Surf Sci; 2021 Oct; 712():. PubMed ID: 34176977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersive interactions in water bilayers at metallic surfaces: a comparison of the PBE and RPBE functional including semiempirical dispersion corrections.
    Tonigold K; Gross A
    J Comput Chem; 2012 Mar; 33(6):695-701. PubMed ID: 22228509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. van der Waals density functionals applied to corundum-type sesquioxides: bulk properties and adsorption of CH3 and C6H6 on (0001) surfaces.
    Dabaghmanesh S; Neyts EC; Partoens B
    Phys Chem Chem Phys; 2016 Aug; 18(33):23139-46. PubMed ID: 27494541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests of Exchange-Correlation Functional Approximations Against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds.
    Zhang W; Truhlar DG; Tang M
    J Chem Theory Comput; 2013 Sep; 9(9):3965-77. PubMed ID: 26592392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinvestigating oxygen adsorption on Ag(111) by using strongly constrained and appropriately normed semi-local density functional with the revised Vydrov van Voorhis van der Waals force correction.
    Hinsch JJ; Liu J; Wang Y
    J Chem Phys; 2021 Dec; 155(23):234704. PubMed ID: 34937376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS
    J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of intermolecular interaction energies, particularly those of hetero-atom containing molecules obtained by DFT calculations with Grimme's D2, D3 and D3BJ dispersion corrections.
    Tsuzuki S; Uchimaru T
    Phys Chem Chem Phys; 2020 Oct; 22(39):22508-22519. PubMed ID: 33000847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular adsorption at Pt(111). How accurate are DFT functionals?
    Gautier S; Steinmann SN; Michel C; Fleurat-Lessard P; Sautet P
    Phys Chem Chem Phys; 2015 Nov; 17(43):28921-30. PubMed ID: 26455444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.
    Corminboeuf C
    Acc Chem Res; 2014 Nov; 47(11):3217-24. PubMed ID: 24655016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-ligand interaction energies with dispersion corrected density functional theory and high-level wave function based methods.
    Antony J; Grimme S; Liakos DG; Neese F
    J Phys Chem A; 2011 Oct; 115(41):11210-20. PubMed ID: 21842894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.