BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 30965152)

  • 1. Engineering a naturally-derived adhesive and conductive cardiopatch.
    Walker BW; Lara RP; Yu CH; Sani ES; Kimball W; Joyce S; Annabi N
    Biomaterials; 2019 Jul; 207():89-101. PubMed ID: 30965152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
    Navaei A; Saini H; Christenson W; Sullivan RT; Ros R; Nikkhah M
    Acta Biomater; 2016 Sep; 41():133-46. PubMed ID: 27212425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering.
    Lee J; Manoharan V; Cheung L; Lee S; Cha BH; Newman P; Farzad R; Mehrotra S; Zhang K; Khan F; Ghaderi M; Lin YD; Aftab S; Mostafalu P; Miscuglio M; Li J; Mandal BB; Hussain MA; Wan KT; Tang XS; Khademhosseini A; Shin SR
    ACS Nano; 2019 Nov; 13(11):12525-12539. PubMed ID: 31621284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.
    Shin SR; Zihlmann C; Akbari M; Assawes P; Cheung L; Zhang K; Manoharan V; Zhang YS; YĆ¼ksekkaya M; Wan KT; Nikkhah M; Dokmeci MR; Tang XS; Khademhosseini A
    Small; 2016 Jul; 12(27):3677-89. PubMed ID: 27254107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroconductive Graphene-Containing Polymeric Patch: A Promising Platform for Future Cardiac Repair.
    Talebi A; Labbaf S; Karimzadeh F; Masaeli E; Nasr Esfahani MH
    ACS Biomater Sci Eng; 2020 Jul; 6(7):4214-4224. PubMed ID: 33463338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mussel-inspired conductive Ti
    Ye G; Wen Z; Wen F; Song X; Wang L; Li C; He Y; Prakash S; Qiu X
    Theranostics; 2020; 10(5):2047-2066. PubMed ID: 32104499
    [No Abstract]   [Full Text] [Related]  

  • 7. Electrically conductive materials for in vitro cardiac microtissue engineering.
    Baei P; Hosseini M; Baharvand H; Pahlavan S
    J Biomed Mater Res A; 2020 May; 108(5):1203-1213. PubMed ID: 32034936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators.
    Shin SR; Jung SM; Zalabany M; Kim K; Zorlutuna P; Kim SB; Nikkhah M; Khabiry M; Azize M; Kong J; Wan KT; Palacios T; Dokmeci MR; Bae H; Tang XS; Khademhosseini A
    ACS Nano; 2013 Mar; 7(3):2369-80. PubMed ID: 23363247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering.
    Fares MM; Shirzaei Sani E; Portillo Lara R; Oliveira RB; Khademhosseini A; Annabi N
    Biomater Sci; 2018 Oct; 6(11):2938-2950. PubMed ID: 30246835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive biomaterials for cardiac repair: A review.
    Li Y; Wei L; Lan L; Gao Y; Zhang Q; Dawit H; Mao J; Guo L; Shen L; Wang L
    Acta Biomater; 2022 Feb; 139():157-178. PubMed ID: 33887448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing.
    Zhao X; Sun X; Yildirimer L; Lang Q; Lin ZYW; Zheng R; Zhang Y; Cui W; Annabi N; Khademhosseini A
    Acta Biomater; 2017 Feb; 49():66-77. PubMed ID: 27826004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroconductive biomaterials for cardiac tissue engineering.
    Esmaeili H; Patino-Guerrero A; Hasany M; Ansari MO; Memic A; Dolatshahi-Pirouz A; Nikkhah M
    Acta Biomater; 2022 Feb; 139():118-140. PubMed ID: 34455109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.
    Yue K; Trujillo-de Santiago G; Alvarez MM; Tamayol A; Annabi N; Khademhosseini A
    Biomaterials; 2015 Dec; 73():254-71. PubMed ID: 26414409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction.
    Efraim Y; Sarig H; Cohen Anavy N; Sarig U; de Berardinis E; Chaw SY; Krishnamoorthi M; Kalifa J; Bogireddi H; Duc TV; Kofidis T; Baruch L; Boey FYC; Venkatraman SS; Machluf M
    Acta Biomater; 2017 Mar; 50():220-233. PubMed ID: 27956366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(Glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S
    Tissue Eng Part A; 2011 May; 17(9-10):1363-73. PubMed ID: 21247338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization.
    He Y; Ye G; Song C; Li C; Xiong W; Yu L; Qiu X; Wang L
    Theranostics; 2018; 8(18):5159-5177. PubMed ID: 30429892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conductive cell-delivery construct as a bioengineered patch that can improve electrical propagation and synchronize cardiomyocyte contraction for heart repair.
    Chen S; Hsieh MH; Li SH; Wu J; Weisel RD; Chang Y; Sung HW; Li RK
    J Control Release; 2020 Apr; 320():73-82. PubMed ID: 31958479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Conductive Bioengineered Cardiac Patch for Myocardial Infarction Treatment by Improving Tissue Electrical Integrity.
    Yin Q; Zhu P; Liu W; Gao Z; Zhao L; Wang C; Li S; Zhu M; Zhang Q; Zhang X; Wang C; Zhou J
    Adv Healthc Mater; 2023 Jan; 12(1):e2201856. PubMed ID: 36226990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsically Conductive Polymers for Striated Cardiac Muscle Repair.
    Ul Haq A; Carotenuto F; De Matteis F; Prosposito P; Francini R; Teodori L; Pasquo A; Di Nardo P
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.