BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30965560)

  • 21. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly reproducible surface-enhanced Raman spectra on semiconductor SnO2 octahedral nanoparticles.
    Jiang L; Yin P; You T; Wang H; Lang X; Guo L; Yang S
    Chemphyschem; 2012 Dec; 13(17):3932-6. PubMed ID: 22997142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Assembly of Strain-Adaptable Surface-Enhanced Raman Scattering Substrate on Polydimethylsiloxane Nanowrinkles.
    Peng R; Zhang T; Wang S; Liu Z; Pan P; Xu X; Song Y; Liu X; Yan S; Wang J
    Anal Chem; 2024 Jun; ():. PubMed ID: 38888085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip.
    Wu L; Wang Z; Zong S; Cui Y
    Biosens Bioelectron; 2014 Dec; 62():13-8. PubMed ID: 24973537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film.
    Fortuni B; Fujita Y; Ricci M; Inose T; Aubert R; Lu G; Hutchison JA; Hofkens J; Latterini L; Uji-I H
    Chem Commun (Camb); 2017 May; 53(37):5121-5124. PubMed ID: 28435951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection.
    Bailey MR; Pentecost AM; Selimovic A; Martin RS; Schultz ZD
    Anal Chem; 2015 Apr; 87(8):4347-55. PubMed ID: 25815795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Sensitive and Reliable microRNA Detection with a Recyclable Microfluidic Device and an Easily Assembled SERS Substrate.
    Lee T; Kwon S; Choi HJ; Lim H; Lee J
    ACS Omega; 2021 Aug; 6(30):19656-19664. PubMed ID: 34368553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering.
    Xu S; Ji X; Xu W; Li X; Wang L; Bai Y; Zhao B; Ozaki Y
    Analyst; 2004 Jan; 129(1):63-8. PubMed ID: 14737585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO
    Wei C; Xu MM; Fang CW; Jin Q; Yuan YX; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():262-268. PubMed ID: 28082212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bridging Fe
    He H; Sun DW; Pu H; Huang L
    Food Chem; 2020 Sep; 324():126832. PubMed ID: 32344338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitive detection of platelet-derived growth factor through surface-enhanced Raman scattering.
    Wang CW; Chang HT
    Anal Chem; 2014 Aug; 86(15):7606-11. PubMed ID: 24991696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods.
    Zong S; Wang Z; Yang J; Wang C; Xu S; Cui Y
    Talanta; 2012 Aug; 97():368-75. PubMed ID: 22841094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control the drying configuration of suspensions via regulating the surface topologies for surface-enhanced Raman scattering optimization.
    Zhou B; Gao Y; Wu X; Wen W
    J Colloid Interface Sci; 2017 Sep; 502():67-76. PubMed ID: 28478223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS).
    Li M; Yang H; Li S; Zhao K; Li J; Jiang D; Sun L; Deng A
    J Agric Food Chem; 2014 Nov; 62(45):10896-902. PubMed ID: 25343225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates.
    Ma C; Trujillo MJ; Camden JP
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23978-84. PubMed ID: 27551811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SERS-fluorescence bimodal nanoprobes for in vitro imaging of fatty acid responsive receptor GPR120.
    Xiao L; Parchur AK; Gilbertson TA; Zhou A
    Anal Methods; 2018; 10(1):22-29. PubMed ID: 29449902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilizing Molecular Hyperpolarizability for Trace Analysis: A Surface-Enhanced Hyper-Raman Scattering Study of Uranyl Ion.
    Trujillo MJ; Camden JP
    ACS Omega; 2018 Jun; 3(6):6660-6664. PubMed ID: 31458840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Synthesis of SERS-Active Au@POM Nanostructures in a Microfluidic Device for Real-Time Detection of Water Pollutants.
    Lafuente M; Pellejero I; Clemente A; Urbiztondo MA; Mallada R; Reinoso S; Pina MP; Gandía LM
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36458-36467. PubMed ID: 32646210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.