These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30965619)

  • 1. Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine.
    Yeh CH; Lin MH; Lin CH; Yu CE; Chen MJ
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30965619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor Fusion and State Estimation of IoT Enabled Wind Energy Conversion System.
    Noor-A-Rahim M; Khyam MO; Li X; Pesch D
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine.
    Wang H; Wang H; Jiang G; Wang Y; Ren S
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An IoT-Based Life Cycle Assessment Platform of Wind Turbines.
    An J; Zou Z; Chen G; Sun Y; Liu R; Zheng L
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning.
    Elasha F; Shanbr S; Li X; Mba D
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Pass Filtering Empirical Wavelet Transform Machine Learning Based Fault Diagnosis for Combined Fault of Wind Turbines.
    Xiao Y; Xue J; Li M; Yang W
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An IoT Platform with Monitoring Robot Applying CNN-Based Context-Aware Learning.
    Shin M; Paik W; Kim B; Hwang S
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31159503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization System Based on Convolutional Neural Network and Internet of Medical Things for Early Diagnosis of Lung Cancer.
    Hussain Ali Y; Sabu Chooralil V; Balasubramanian K; Manyam RR; Kidambi Raju S; T Sadiq A; Farhan AK
    Bioengineering (Basel); 2023 Mar; 10(3):. PubMed ID: 36978711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms.
    Ibrahim M; Alsheikh A; Al-Hindawi Q; Al-Dahidi S; ElMoaqet H
    Comput Intell Neurosci; 2020; 2020():8439719. PubMed ID: 32377179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Framework for Bidirectional Knowledge-Based Maintenance of Wind Turbines.
    Vives J; Palaci J; Heart J
    Comput Intell Neurosci; 2022; 2022():1020400. PubMed ID: 36507231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent fault detection scheme for constant-speed wind turbines based on improved multiscale fuzzy entropy and adaptive chaotic Aquila optimization-based support vector machine.
    Wang Z; Li G; Yao L; Cai Y; Lin T; Zhang J; Dong H
    ISA Trans; 2023 Jul; 138():582-602. PubMed ID: 36966057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration Analysis for Fault Detection of Wind Turbine Drivetrains-A Comprehensive Investigation.
    Teng W; Ding X; Tang S; Xu J; Shi B; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault diagnosis for wind turbines with graph neural network model based on one-shot learning.
    Yang S; Zhou Y; Chen X; Li C; Song H
    R Soc Open Sci; 2023 Jul; 10(7):230706. PubMed ID: 37416824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fault diagnosis and prediction of wind turbine gearbox based on a new hybrid model.
    Wang H; Zhao X; Wang W
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24506-24520. PubMed ID: 36344885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Model-Agnostic Meta-Baseline Method for Few-Shot Fault Diagnosis of Wind Turbines.
    Liu X; Teng W; Liu Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration-Response-Only Structural Health Monitoring for Offshore Wind Turbine Jacket Foundations via Convolutional Neural Networks.
    Puruncajas B; Vidal Y; Tutivén C
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-task learning for the prediction of wind power ramp events with deep neural networks.
    Dorado-Moreno M; Navarin N; Gutiérrez PA; Prieto L; Sperduti A; Salcedo-Sanz S; Hervás-Martínez C
    Neural Netw; 2020 Mar; 123():401-411. PubMed ID: 31926464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SVM-based solution for fault detection in wind turbines.
    Santos P; Villa LF; Reñones A; Bustillo A; Maudes J
    Sensors (Basel); 2015 Mar; 15(3):5627-48. PubMed ID: 25760051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource-Efficient Pet Dog Sound Events Classification Using LSTM-FCN Based on Time-Series Data.
    Kim Y; Sa J; Chung Y; Park D; Lee S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of power generation and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression.
    Siavash NK; Ghobadian B; Najafi G; Rohani A; Tavakoli T; Mahmoodi E; Mamat R; Mazlan M
    Environ Res; 2021 May; 196():110434. PubMed ID: 33166537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.