BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30965639)

  • 1. Long Non-Coding RNA
    Hitachi K; Nakatani M; Tsuchida K
    Noncoding RNA; 2019 Apr; 5(2):. PubMed ID: 30965639
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Hitachi K; Nakatani M; Takasaki A; Ouchi Y; Uezumi A; Ageta H; Inagaki H; Kurahashi H; Tsuchida K
    EMBO Rep; 2019 Mar; 20(3):. PubMed ID: 30622218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data describing the effects of depletion of
    Hitachi K; Tsuchida K
    Data Brief; 2019 Aug; 25():104172. PubMed ID: 31321265
    [No Abstract]   [Full Text] [Related]  

  • 4. Expression Levels of Long Non-Coding RNAs Change in Models of Altered Muscle Activity and Muscle Mass.
    Hitachi K; Nakatani M; Funasaki S; Hijikata I; Maekawa M; Honda M; Tsuchida K
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32120896
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Hitachi K; Kiyofuji Y; Nakatani M; Tsuchida K
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Analysis of Differentially Expressed Coding and Long Non-Coding RNAs in Multiple Models of Skeletal Muscle Atrophy.
    Hitachi K; Nakatani M; Kiyofuji Y; Inagaki H; Kurahashi H; Tsuchida K
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33806354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy.
    Hitachi K; Honda M; Tsuchida K
    Cells; 2022 Jul; 11(15):. PubMed ID: 35892588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of gene expression of 2-mo denervated, 2-mo stimulated-denervated, and control rat skeletal muscles.
    Kostrominova TY; Dow DE; Dennis RG; Miller RA; Faulkner JA
    Physiol Genomics; 2005 Jul; 22(2):227-43. PubMed ID: 15840640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrelations of myogenic response, progressive atrophy of muscle fibers, and cell death in denervated skeletal muscle.
    Borisov AB; Dedkov EI; Carlson BM
    Anat Rec; 2001 Oct; 264(2):203-18. PubMed ID: 11590596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The study of myogenin expression in denervated human skeletal muscles.
    Chen L; Huang HW; Gu SH; Xu L; Gu YD; Xu JG
    J Int Med Res; 2011; 39(2):378-87. PubMed ID: 21672341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome sequencing and analysis reveals the molecular mechanism of skeletal muscle atrophy induced by denervation.
    Chen X; Li M; Chen B; Wang W; Zhang L; Ji Y; Chen Z; Ni X; Shen Y; Sun H
    Ann Transl Med; 2021 Apr; 9(8):697. PubMed ID: 33987395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Up- and Downregulated Genes after Long-Term Muscle Atrophy Induced by Denervation in Mice Detected Using RNA-Seq.
    Sawano S; Fukushima M; Akasaka T; Nakamura M; Tatsumi R; Ikeuchi Y; Mizunoya W
    Life (Basel); 2023 Apr; 13(5):. PubMed ID: 37240756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dach2-Hdac9 signaling regulates reinnervation of muscle endplates.
    Macpherson PC; Farshi P; Goldman D
    Development; 2015 Dec; 142(23):4038-48. PubMed ID: 26483211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse.
    Traoré M; Gentil C; Benedetto C; Hogrel JY; De la Grange P; Cadot B; Benkhelifa-Ziyyat S; Julien L; Lemaitre M; Ferry A; Piétri-Rouxel F; Falcone S
    Sci Transl Med; 2019 Nov; 11(517):. PubMed ID: 31694926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling.
    Huang QK; Qiao HY; Fu MH; Li G; Li WB; Chen Z; Wei J; Liang BS
    Med Sci Monit; 2016 Apr; 22():1161-70. PubMed ID: 27054781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy.
    Huang Z; Zhong L; Zhu J; Xu H; Ma W; Zhang L; Shen Y; Law BY; Ding F; Gu X; Sun H
    Ann Transl Med; 2020 Dec; 8(24):1681. PubMed ID: 33490193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) in skeletal muscle atrophy and hypertrophy.
    Norrby M; Tågerud S
    J Cell Physiol; 2010 Apr; 223(1):194-201. PubMed ID: 20049871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of nicotinic acetylcholine receptor, myogenin, and MRF4 gene expression to long-term muscle denervation.
    Adams L; Carlson BM; Henderson L; Goldman D
    J Cell Biol; 1995 Dec; 131(5):1341-9. PubMed ID: 8522594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atypical expression of circadian clock genes in denervated mouse skeletal muscle.
    Nakao R; Yamamoto S; Horikawa K; Yasumoto Y; Nikawa T; Mukai C; Oishi K
    Chronobiol Int; 2015 May; 32(4):486-96. PubMed ID: 25798696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microarray Analysis of Gene Expression Provides New Insights Into Denervation-Induced Skeletal Muscle Atrophy.
    Shen Y; Zhang R; Xu L; Wan Q; Zhu J; Gu J; Huang Z; Ma W; Shen M; Ding F; Sun H
    Front Physiol; 2019; 10():1298. PubMed ID: 31681010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.