These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30965641)

  • 1. The Bioaccumulation and Biodegradation of Testosterone by
    Fu M; Deng B; Lü H; Yao W; Su S; Wang D
    Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30965641
    [No Abstract]   [Full Text] [Related]  

  • 2. The bioconcentration and degradation of nonylphenol and nonylphenol polyethoxylates by Chlorella vulgaris.
    Sun HW; Hu HW; Wang L; Yang Y; Huang GL
    Int J Mol Sci; 2014 Jan; 15(1):1255-70. PubMed ID: 24445260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons.
    Xaaldi Kalhor A; Movafeghi A; Mohammadi-Nassab AD; Abedi E; Bahrami A
    Mar Pollut Bull; 2017 Oct; 123(1-2):286-290. PubMed ID: 28844453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicokinetic modeling of octylphenol bioconcentration in Chlorella vulgaris and its trophic transfer to Daphnia magna.
    Achar JC; Kim DY; Kwon JH; Jung J
    Ecotoxicol Environ Saf; 2020 May; 194():110379. PubMed ID: 32143104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of nutrient level on biodegradation and bioconcentration of phthalate acid esters in Chlorella vulgaris.
    Chi J; Li B; Wang QY; Liu H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(2):179-83. PubMed ID: 17182389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioadsorption, bioaccumulation and biodegradation of antibiotics by algae and their association with algal physiological state and antibiotic physicochemical properties.
    Long S; Hamilton PB; Wang C; Li C; Xue X; Zhao Z; Wu P; Gu E; Uddin MM; Li B; Xu F
    J Hazard Mater; 2024 Apr; 468():133787. PubMed ID: 38364579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal and biodegradation of nonylphenol by different Chlorella species.
    Gao QT; Wong YS; Tam NF
    Mar Pollut Bull; 2011; 63(5-12):445-51. PubMed ID: 21507429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Photodegradation of 17beta-estradiol induced by Chlorella vulgaris].
    Ge L; Deng H; Wu F; Weng Y; Deng N
    Ying Yong Sheng Tai Xue Bao; 2004 Jul; 15(7):1257-60. PubMed ID: 15506110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga
    Kizovský M; Pilát Z; Mylenko M; Hrouzek P; Kuta J; Skoupý R; Krzyžánek V; Hrubanová K; Adamczyk O; Ježek J; Bernatová S; Klementová T; Gjevik A; Šiler M; Samek O; Zemánek P
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33920129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus.
    Ruangsomboon S; Wongrat L
    Aquat Toxicol; 2006 Jun; 78(1):15-20. PubMed ID: 16504313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris.
    Deng L; Wang H; Deng N
    J Hazard Mater; 2006 Nov; 138(2):288-92. PubMed ID: 16839665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of benzo[a]pyrene by a marine Chlorella vulgaris LH-1 with heterotrophic ability.
    Chen Q; Li Z; Li Y; Liu M; Wu Y; Chen Z; Zhu B
    Mar Pollut Bull; 2024 Jan; 198():115848. PubMed ID: 38029673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium Uptake by the Green Microalga Chlorella vulgaris in Batch Cultures.
    Ben Amor-Ben Ayed H; Taidi B; Ayadi H; Pareau D; Stambouli M
    J Microbiol Biotechnol; 2016 Mar; 26(3):503-10. PubMed ID: 26628253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-seq analysis reveals the significant effects of different light conditions on oil degradation by marine Chlorella vulgaris.
    Li J; Chen Q; Bao B; Liu M; Bao M; Liu J; Mu J
    Mar Pollut Bull; 2018 Dec; 137():267-276. PubMed ID: 30503435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media.
    Rugnini L; Costa G; Congestri R; Bruno L
    Sci Total Environ; 2017 Dec; 601-602():959-967. PubMed ID: 28582741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced removal efficiency of sulfamethoxazole by acclimated microalgae: Tolerant mechanism, and transformation products and pathways.
    Zhang Y; Wan J; Li Z; Wu Z; Dang C; Fu J
    Bioresour Technol; 2022 Mar; 347():126461. PubMed ID: 34863845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of microalgal treatments on pesticides in water.
    Hultberg M; Bodin H; Ardal E; Asp H
    Environ Technol; 2016; 37(7):893-8. PubMed ID: 26370171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of biopellets composed of microalgae and fungi on cadmium present at environmentally relevant levels in water.
    Bodin H; Asp H; Hultberg M
    Int J Phytoremediation; 2017 May; 19(5):500-504. PubMed ID: 27739868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Removal of Potassium Cyanide and its Toxicity in Green Algae (Chlorella vulgaris).
    Liu Q; Zhang G; Ding J; Zou H; Shi H; Huang C
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):228-233. PubMed ID: 29159542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris.
    Pantoja Munoz L; Purchase D; Jones H; Raab A; Urgast D; Feldmann J; Garelick H
    Aquat Toxicol; 2016 Jun; 175():56-72. PubMed ID: 26994369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.