These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30965690)

  • 21. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of hydrophilicity of polyaniline particles on their electrorheology: steady flow and dynamic behaviour.
    Stěnička M; Pavlínek V; Sáha P; Blinova NV; Stejskal J; Quadrat O
    J Colloid Interface Sci; 2010 Jun; 346(1):236-40. PubMed ID: 20227708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guest-controlling effects on ER behaviors of beta-cyclodextrin polymer.
    Gao ZW; Zhao XP
    J Colloid Interface Sci; 2005 Sep; 289(1):56-62. PubMed ID: 16009217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of Cellulose/Laponite Composite Particles and Their Enhanced Electrorheological Responses.
    Liu Z; Zhao Z; Jin X; Wang LM; Liu YD
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Electric Field Responses of Inorganic Ionogels and Poly(ionic liquid)s.
    Zhao Z; Zhang G; Yin Y; Dong C; Liu YD
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33020439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced electrorheological activity of porous chitosan particles.
    Kuznetsov NM; Zagoskin YD; Vdovichenko AY; Bakirov AV; Kamyshinsky RA; Istomina AP; Grigoriev TE; Chvalun SN
    Carbohydr Polym; 2021 Mar; 256():117530. PubMed ID: 33483048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticles Functionalized by Conducting Polymers and Their Electrorheological and Magnetorheological Applications.
    Dong YZ; Choi K; Kwon SH; Nam JD; Choi HJ
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31941163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
    Gong X; Wu J; Huang X; Wen W; Sheng P
    Nanotechnology; 2008 Apr; 19(16):165602. PubMed ID: 21825646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of core-shell structured metal-organic framework@PANI nanocomposite and its electrorheological properties.
    Wen Q; Ma L; Wang C; Wang B; Han R; Hao C; Chen K
    RSC Adv; 2019 May; 9(25):14520-14530. PubMed ID: 35519353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microemulsion polymerized polyaniline/montmorillonite nanocomposite and its electrorheology.
    Song DH; Lee HM; Choi HJ
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1501-4. PubMed ID: 19441556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of surface properties on the electrorheological response of hematite/silicone oil dispersions.
    Erol O; Ramos-Tejada MDM; Unal HI; Delgado ÁV
    J Colloid Interface Sci; 2013 Feb; 392():75-82. PubMed ID: 23116854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields.
    Kwon SH; Liu YD; Choi HJ
    J Colloid Interface Sci; 2015 Feb; 440():9-15. PubMed ID: 25460683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly stable and efficient electrorheological suspensions with hydrophobic interaction.
    Liang Y; Yuan X; Wang L; Zhou X; Ren X; Huang Y; Zhang M; Wu J; Wen W
    J Colloid Interface Sci; 2020 Mar; 564():381-391. PubMed ID: 31923826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Semi-conducting microspheres formed from glucose for semi-active electric field-responsive electrorheological systems.
    Kutalkova E; Plachy T
    Soft Matter; 2022 Dec; 18(47):9037-9044. PubMed ID: 36409202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual Electrorheological and Magnetorheological Behaviors of Poly(N-methyl aniline) Coated ZnFe
    Kim HM; Jeong JY; Kang SH; Jin HJ; Choi HJ
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gelation of chitin and chitosan dispersed suspensions under electric field: effect of degree of deacetylation.
    Ko YG; Shin SS; Choi US; Park YS; Woo JW
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1289-98. PubMed ID: 21425802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid.
    Wu J; Xu G; Cheng Y; Liu F; Guo J; Cui P
    J Colloid Interface Sci; 2012 Jul; 378(1):36-43. PubMed ID: 22579514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.