BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 30965706)

  • 1. Gelatin-Based Hydrogels for Organ 3D Bioprinting.
    Wang X; Ao Q; Tian X; Fan J; Tong H; Hou W; Bai S
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Bioprinting of Adipose-Derived Stem Cells for Organ Manufacturing.
    Wang X; Liu C
    Adv Exp Med Biol; 2018; 1078():3-14. PubMed ID: 30357615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting.
    Chen Q; Tian X; Fan J; Tong H; Ao Q; Wang X
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Polymers for Organ 3D Bioprinting.
    Liu F; Chen Q; Liu C; Ao Q; Tian X; Fan J; Tong H; Wang X
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
    Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application Status of Sacrificial Biomaterials in 3D Bioprinting.
    Liu S; Wang T; Li S; Wang X
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioartificial Organ Manufacturing Technologies.
    Wang X
    Cell Transplant; 2019 Jan; 28(1):5-17. PubMed ID: 30477315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs.
    Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT
    ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilayer 3D bioprinting and complex mechanical properties of alginate-gelatin mesostructures.
    Ahmadi Soufivand A; Faber J; Hinrichsen J; Budday S
    Sci Rep; 2023 Jul; 13(1):11253. PubMed ID: 37438423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress of 3D Bioprinting in Organ Manufacturing.
    Song D; Xu Y; Liu S; Wen L; Wang X
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a Novel Thiol-Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells.
    Burchak V; Koch F; Siebler L; Haase S; Horner VK; Kempter X; Stark GB; Schepers U; Grimm A; Zimmermann S; Koltay P; Strassburg S; Finkenzeller G; Simunovic F; Lampert F
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887286
    [No Abstract]   [Full Text] [Related]  

  • 14. The Effect of Agarose on 3D Bioprinting.
    Gong C; Kong Z; Wang X
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Polymers for Three-Dimensional (3D) Organ Bioprinting.
    Wang X
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31775349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Stable Vascular Networks by 3D Coaxial Printing and Schiff-Based Reaction.
    Shan J; Kong Z; Wang X
    Gels; 2024 May; 10(6):. PubMed ID: 38920913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and Fabrication of Silk Fibroin-Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting.
    Trucco D; Sharma A; Manferdini C; Gabusi E; Petretta M; Desando G; Ricotti L; Chakraborty J; Ghosh S; Lisignoli G
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3306-3320. PubMed ID: 34101410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting.
    Hsieh CT; Hsu SH
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.