BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30965717)

  • 1. The Effect of Moisture on Cellulose Nanocrystals Intended as a High Gas Barrier Coating on Flexible Packaging Materials.
    Fotie G; Rampazzo R; Ortenzi MA; Checchia S; Fessas D; Piergiovanni L
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging.
    Leite LSF; Bilatto S; Paschoalin RT; Soares AC; Moreira FKV; Oliveira ON; Mattoso LHC; Bras J
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2974-2983. PubMed ID: 33122067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Property Relationship of Cellulose Nanocrystal-Polyvinyl Alcohol Thin Films for High Barrier Coating Applications.
    Nuruddin M; Chowdhury RA; Szeto R; Howarter JA; Erk KA; Szczepanski CR; Youngblood JP
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12472-12482. PubMed ID: 33656333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water sorption properties of extruded zein films.
    Wang Y; Padua GW
    J Agric Food Chem; 2004 May; 52(10):3100-5. PubMed ID: 15137860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals.
    da Silva JB; Pereira FV; Druzian JI
    J Food Sci; 2012 Jun; 77(6):N14-9. PubMed ID: 22582979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roll-to-Roll, Dual-Layer Slot Die Coating of Chitin and Cellulose Oxygen Barrier Films for Renewable Packaging.
    Jung K; Ji Y; Jeong TJ; Ciesielski PN; Meredith JC; Harris TAL
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44922-44932. PubMed ID: 36129845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films.
    Sukyai P; Anongjanya P; Bunyahwuthakul N; Kongsin K; Harnkarnsujarit N; Sukatta U; Sothornvit R; Chollakup R
    Food Res Int; 2018 May; 107():528-535. PubMed ID: 29580516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Gibbsite Nanoplatelet/Cellulose Nanocrystal Multilayered Coatings for Oxygen Barrier Improvement.
    Chemin M; Heux L; Guérin D; Crowther-Alwyn L; Jean B
    Front Chem; 2019; 7():507. PubMed ID: 31380351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance.
    Tyagi P; Lucia LA; Hubbe MA; Pal L
    Carbohydr Polym; 2019 Feb; 206():281-288. PubMed ID: 30553323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of cellulose nanocrystals gellan gum-based coating on color and respiration rate of Agaricus bisporus mushrooms.
    Criado P; Fraschini C; Shankar S; Salmieri S; Lacroix M
    J Food Sci; 2021 Feb; 86(2):420-425. PubMed ID: 33438265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Barrier, Biodegradable Films with Polyvinyl Alcohol/Polylactic Acid + Wax Double Coatings: Influence of Relative Humidity on Transport Properties and Suitability for Modified Atmosphere Packaging Applications.
    Barbato A; Apicella A; Malvano F; Scarfato P; Incarnato L
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The preparation and characterization of nanocomposite film reinforced by modified cellulose nanocrystals.
    Chen QJ; Zhou LL; Zou JQ; Gao X
    Int J Biol Macromol; 2019 Jul; 132():1155-1162. PubMed ID: 30981769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging.
    Pasquier E; Mattos BD; Koivula H; Khakalo A; Belgacem MN; Rojas OJ; Bras J
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30236-30245. PubMed ID: 35727693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acylation of cellulose nanocrystals with acids/trifluoroacetic anhydride and properties of films from esters of CNCs.
    Huang F; Wu X; Yu Y; Lu Y; Chen Q
    Carbohydr Polym; 2017 Jan; 155():525-534. PubMed ID: 27702544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable biocomposite films fabricated using cellulose nanocrystals and additives for food packaging.
    Chen C; Sun W; Wang J; Gardner DJ
    Carbohydr Polym; 2023 Dec; 321():121315. PubMed ID: 37739509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Characterization of Electrospun Fiber-Based Poly(ethylene-
    Melendez-Rodriguez B; Torres-Giner S; Zavagna L; Sammon C; Cabedo L; Prieto C; Lagaron JM
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34201828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications.
    Yadav M; Chiu FC
    Carbohydr Polym; 2019 May; 211():181-194. PubMed ID: 30824078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials.
    Lei W; Fang C; Zhou X; Yin Q; Pan S; Yang R; Liu D; Ouyang Y
    Carbohydr Polym; 2018 Feb; 181():376-385. PubMed ID: 29253986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies to Improve the Properties of Amaranth Protein Isolate-Based Thin Films for Food Packaging Applications: Nano-Layering through Spin-Coating and Incorporation of Cellulose Nanocrystals.
    López-Rubio A; Blanco-Padilla A; Oksman K; Mendoza S
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33371185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.