These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30965717)

  • 21. Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications.
    Fox DM; Rodriguez RS; Devilbiss MN; Woodcock J; Davis CS; Sinko R; Keten S; Gilman JW
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27270-27281. PubMed ID: 27626824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Waste Orange Peels as a Source of Cellulose Nanocrystals and Their Use for the Development of Nanocomposite Films.
    Bigi F; Maurizzi E; Haghighi H; Siesler HW; Licciardello F; Pulvirenti A
    Foods; 2023 Feb; 12(5):. PubMed ID: 36900477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dopamine-induced functionalization of cellulose nanocrystals with polyethylene glycol towards poly(
    Li L; Bao RY; Gao T; Liu ZY; Xie BH; Yang MB; Yang W
    Carbohydr Polym; 2019 Jan; 203():275-284. PubMed ID: 30318214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cationic CNC-stabilized Pickering emulsions of linseed oil for hydrophobic coatings.
    Jaekel EE; Filonenko S
    RSC Adv; 2023 Jun; 13(25):16860-16866. PubMed ID: 37283875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Oxygen-Barrier Multilayer Films Based on Polyhydroxyalkanoates and Cellulose Nanocrystals.
    Melendez-Rodriguez B; Torres-Giner S; Angulo I; Pardo-Figuerez M; Hilliou L; Escuin JM; Cabedo L; Nevo Y; Prieto C; Lagaron JM
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34070946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gas barrier coating based on cellulose nanocrystals and its preservation effects on mango.
    Li M; Shi Z; He S; Hu Q; Cai P; Gan L; Huang J; Zhang Y
    Carbohydr Polym; 2023 Dec; 321():121317. PubMed ID: 37739541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity.
    Martínez-Sanz M; Lopez-Rubio A; Lagaron JM
    Carbohydr Polym; 2013 Oct; 98(1):1072-82. PubMed ID: 23987449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Food with High Moisture Content on Oxygen Barrier Property of Polyvinyl Alcohol (PVA)/Vermiculite Nanocomposite Coated Multilayer Packaging Film.
    Kim JM; Lee MH; Ko JA; Kang DH; Bae H; Park HJ
    J Food Sci; 2018 Feb; 83(2):349-357. PubMed ID: 29369361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Mar; 58(6):3753-60. PubMed ID: 20187652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions.
    Yang Q; Fukuzumi H; Saito T; Isogai A; Zhang L
    Biomacromolecules; 2011 Jul; 12(7):2766-71. PubMed ID: 21657790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Environment on Acetylated Cellulose Nanocrystal-Reinforced Biopolymers Films.
    Oberlintner A; Likozar B; Novak U
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin.
    Sung SH; Chang Y; Han J
    Carbohydr Polym; 2017 Aug; 169():495-503. PubMed ID: 28504172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Moisture Sorption Isotherms and Thermodynamic Properties of Biodegradable Polymers for Application in Food Packaging Industry.
    Tavares L; Sousa LR; Magalhães da Silva S; Lima PS; Oliveira JM
    Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse.
    Slavutsky AM; Bertuzzi MA
    Carbohydr Polym; 2014 Sep; 110():53-61. PubMed ID: 24906728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organic-Inorganic Hybrid Planarization and Water Vapor Barrier Coatings on Cellulose Nanofibrils Substrates.
    Karasu F; Müller L; Ridaoui H; Ibn ElHaj M; Flodberg G; Aulin C; Axrup L; Leterrier Y
    Front Chem; 2018; 6():571. PubMed ID: 30525026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.
    Arrieta MP; Fortunati E; Dominici F; López J; Kenny JM
    Carbohydr Polym; 2015 May; 121():265-75. PubMed ID: 25659698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals.
    Wang Z; Yao Z; Zhou J; Zhang Y
    Carbohydr Polym; 2017 Feb; 157():945-952. PubMed ID: 27988013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water vapor adsorption isotherms of agar-based nanocomposite films.
    Rhim JW
    J Food Sci; 2011 Oct; 76(8):N68-72. PubMed ID: 22417601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solubility and moisture sorption isotherms of whey-protein-based edible films as influenced by lipid and plasticizer incorporation.
    Kim SJ; Ustunol Z
    J Agric Food Chem; 2001 Sep; 49(9):4388-91. PubMed ID: 11559143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.
    Goh K; Heising JK; Yuan Y; Karahan HE; Wei L; Zhai S; Koh JX; Htin NM; Zhang F; Wang R; Fane AG; Dekker M; Dehghani F; Chen Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9994-10004. PubMed ID: 27028268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.