These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30965725)

  • 1. TEMPO-Oxidized Cellulose with High Degree of Oxidation.
    Tang Z; Li W; Lin X; Xiao H; Miao Q; Huang L; Chen L; Wu H
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications.
    Bakkari ME; Bindiganavile V; Goncalves J; Boluk Y
    Carbohydr Polym; 2019 Jan; 203():238-245. PubMed ID: 30318209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of carboxylate groups in oxidized never-dried cellulose II catalyzed by TEMPO and 4-acetamide-TEMPO.
    Zhang K; Fischer S; Geissler A; Brendler E
    Carbohydr Polym; 2012 Jan; 87(1):894-900. PubMed ID: 34663051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EPR spectroscopy applied to the study of the TEMPO mediated oxidation of nanocellulose.
    Buffa JM; Grela MA; Aranguren MI; Mucci V
    Carbohydr Polym; 2016 Jan; 136():744-9. PubMed ID: 26572408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recoverable dendritic polyamidoamine immobilized TEMPO for efficient catalytic oxidation of cellulose.
    Liu S; Liang H; Sun T; Yang D; Cao M
    Carbohydr Polym; 2018 Dec; 202():563-570. PubMed ID: 30287037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods.
    Zhang K; Sun P; Liu H; Shang S; Song J; Wang D
    Carbohydr Polym; 2016 Mar; 138():237-43. PubMed ID: 26794758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient homogeneous TEMPO-mediated oxidation of cellulose in lithium bromide hydrates.
    Fu X; Zhang F; Dong C; Zhu W; Xiong K; Pang Z
    Int J Biol Macromol; 2021 Nov; 191():637-645. PubMed ID: 34571122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEMPO-mediated oxidation of cellulose III.
    da Silva Perez D; Montanari S; Vignon MR
    Biomacromolecules; 2003; 4(5):1417-25. PubMed ID: 12959614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxone
    Moore Ii JP; Dachavaram SS; Bommagani S; Penthala NR; Venkatraman P; Foster EJ; Crooks PA; A Hestekin J
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeation of Silver Sulfadiazine Into TEMPO-Oxidized Bacterial Cellulose as an Antibacterial Agent.
    Khattak S; Qin XT; Wahid F; Huang LH; Xie YY; Jia SR; Zhong C
    Front Bioeng Biotechnol; 2020; 8():616467. PubMed ID: 33585416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-(1 → 4)-Polyglucuronic acids with C2/C3-ketones prepared from regenerated cellulose by catalytic oxidation using solid NaOCl·5H
    Chitbanyong K; Hou G; Takeuchi M; Shibata I; Isogai A
    Carbohydr Polym; 2024 Nov; 343():122458. PubMed ID: 39174095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEMPO-Oxidized Cellulose Nanofibril Films Incorporating Graphene Oxide Nanofillers.
    Kim Y; Kim YT; Wang X; Min B; Park SI
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the reactivity of cellulose by oxidation with 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxo-piperidinium cation under mild conditions.
    Khanjani P; Väisänen S; Lovikka V; Nieminen K; Maloney T; Vuorinen T
    Carbohydr Polym; 2017 Nov; 176():293-298. PubMed ID: 28927611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and comparison of carboxymethylation and TEMPO-mediated oxidation for polysaccharides modification.
    Wang W; Liu J; Xu H; Zhang Y; Mao X; Huang WC
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128322. PubMed ID: 38000579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular scale analysis of TEMPO-oxidation of native cellulose molecules.
    Asgarpour Khansary M; Pouresmaeel-Selakjani P; Aroon MA; Hallajisani A; Cookman J; Shirazian S
    Heliyon; 2020 Dec; 6(12):e05776. PubMed ID: 33426323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analyses of supernatant fractions in TEMPO-oxidized pulp/water reaction mixtures separated by centrifugation and dialysis.
    Hou G; Chitbanyong K; Shibata I; Takeuchi M; Isogai A
    Carbohydr Polym; 2024 Jul; 336():122103. PubMed ID: 38670766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation.
    Zhou Y; Saito T; Bergström L; Isogai A
    Biomacromolecules; 2018 Feb; 19(2):633-639. PubMed ID: 29283555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.