These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30965763)

  • 41. Bulk rheology of sticky DNA-functionalized emulsions.
    Stoev ID; Caciagli A; Mukhopadhyay A; Ness C; Eiser E
    Phys Rev E; 2021 Nov; 104(5-1):054602. PubMed ID: 34942818
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combining Microfluidics and Microrheology to Determine Rheological Properties of Soft Matter during Repeated Phase Transitions.
    Wehrman MD; Milstrey MJ; Lindberg S; Schultz KM
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733318
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature-Triggered Colloidal Gelation through Well-Defined Grafted Polymeric Surfaces.
    Van Doorn JM; Sprakel J; Kodger TE
    Gels; 2017 Jun; 3(2):. PubMed ID: 30920518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Towards a Unified Description of the Rheology of Hard-Particle Suspensions.
    Guy BM; Hermes M; Poon WC
    Phys Rev Lett; 2015 Aug; 115(8):088304. PubMed ID: 26340217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stochastic qualifier of gel and glass transitions in laponite suspensions.
    Shayeganfar F; Jabbari-Farouji S; Movahed MS; Jafari GR; Tabar MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061404. PubMed ID: 20866418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating the Dispersant Stabilization of Colloidal Suspensions from the Scaling Behavior of Gel Rheology and Adsorption Measurements.
    Khalkhal F; Negi AS; Harrison J; Stokes CD; Morgan DL; Osuji CO
    Langmuir; 2018 Jan; 34(3):1092-1099. PubMed ID: 29095629
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of granular inclusions on the phase behavior of colloidal gels.
    Li Y; Royer JR; Sun J; Ness C
    Soft Matter; 2023 Feb; 19(7):1342-1347. PubMed ID: 36723039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Manifestation of random first-order transition theory in Wigner glasses.
    Kang H; Kirkpatrick TR; Thirumalai D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042308. PubMed ID: 24229173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rheology of binary colloidal structures assembled via specific biological cross-linking.
    Hiddessen AL; Weitz DA; Hammer DA
    Langmuir; 2004 Aug; 20(16):6788-95. PubMed ID: 15274586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. First-principles constitutive equation for suspension rheology.
    Brader JM; Cates ME; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021403. PubMed ID: 23005759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Particle Surface Roughness Improves Colloidal Stability of Pressurized Pharmaceutical Suspensions.
    Wang H; Nobes DS; Vehring R
    Pharm Res; 2019 Jan; 36(3):43. PubMed ID: 30701324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Criteria for colloidal gelation of thermo-sensitive poly(N-isopropylacrylamide) based microgels.
    Minami S; Yamamoto A; Oura S; Watanabe T; Suzuki D; Urayama K
    J Colloid Interface Sci; 2020 May; 568():165-175. PubMed ID: 32088447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Memory in aging colloidal gels with time-varying attraction.
    Chen Y; Zhang Q; Ramakrishnan S; Leheny RL
    J Chem Phys; 2023 Jan; 158(2):024906. PubMed ID: 36641382
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Soft glassy colloidal arrays in an ionic liquid: colloidal glass transition, ionic transport, and structural color in relation to microstructure.
    Ueno K; Sano Y; Inaba A; Kondoh M; Watanabe M
    J Phys Chem B; 2010 Oct; 114(41):13095-103. PubMed ID: 20879726
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hierarchical microstructures formed by bidisperse colloidal suspensions within colloid-in-liquid crystal gels.
    Diestra-Cruz H; Bukusoglu E; Abbott NL; Acevedo A
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7153-62. PubMed ID: 25706308
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking.
    Liang M; Harder R; Robinson IK
    IUCrJ; 2014 May; 1(Pt 3):172-8. PubMed ID: 25075336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flow-Switched Bistability in a Colloidal Gel with Non-Brownian Grains.
    Jiang Y; Makino S; Royer JR; Poon WCK
    Phys Rev Lett; 2022 Jun; 128(24):248002. PubMed ID: 35776445
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Colloidal gels tuned by oscillatory shear.
    Moghimi E; Jacob AR; Koumakis N; Petekidis G
    Soft Matter; 2017 Mar; 13(12):2371-2383. PubMed ID: 28277578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.