These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30965776)
1. Imidazole, a New Tunable Reagent for Producing Nanocellulose, Part I: Xylan-Coated CNCs and CNFs. Mao J; Abushammala H; Hettegger H; Rosenau T; Laborie MP Polymers (Basel); 2017 Sep; 9(10):. PubMed ID: 30965776 [TBL] [Abstract][Full Text] [Related]
2. Crystallization and mechanical properties of reinforced PHBV composites using melt compounding: Effect of CNCs and CNFs. Jun D; Guomin Z; Mingzhu P; Leilei Z; Dagang L; Rui Z Carbohydr Polym; 2017 Jul; 168():255-262. PubMed ID: 28457448 [TBL] [Abstract][Full Text] [Related]
3. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Du H; Liu W; Zhang M; Si C; Zhang X; Li B Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy. Kotov N; Larsson PA; Jain K; Abitbol T; Cernescu A; Wågberg L; Johnson CM Carbohydr Polym; 2023 Feb; 302():120320. PubMed ID: 36604038 [TBL] [Abstract][Full Text] [Related]
5. Effects of Cellulose Nanocrystals and Cellulose Nanofibers on the Structure and Properties of Polyhydroxybutyrate Nanocomposites. Zhang B; Huang C; Zhao H; Wang J; Yin C; Zhang L; Zhao Y Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835805 [TBL] [Abstract][Full Text] [Related]
6. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. Xu X; Liu F; Jiang L; Zhu JY; Haagenson D; Wiesenborn DP ACS Appl Mater Interfaces; 2013 Apr; 5(8):2999-3009. PubMed ID: 23521616 [TBL] [Abstract][Full Text] [Related]
7. Effect of surface charge density on the ice recrystallization inhibition activity of nanocelluloses. Li T; Zhong Q; Zhao B; Lenaghan S; Wang S; Wu T Carbohydr Polym; 2020 Apr; 234():115863. PubMed ID: 32070502 [TBL] [Abstract][Full Text] [Related]
8. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618 [TBL] [Abstract][Full Text] [Related]
9. Recyclable deep eutectic solvent for the production of cationic nanocelluloses. Li P; Sirviö JA; Asante B; Liimatainen H Carbohydr Polym; 2018 Nov; 199():219-227. PubMed ID: 30143124 [TBL] [Abstract][Full Text] [Related]
10. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Bai L; Liu Y; Ding A; Ren N; Li G; Liang H Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545 [TBL] [Abstract][Full Text] [Related]
11. Preparation of nanocellulose in high yield via chemi-mechanical synergy. Wang J; Xu J; Zhu S; Wu Q; Li J; Gao Y; Wang B; Li J; Gao W; Zeng J; Chen K Carbohydr Polym; 2021 Jan; 251():117094. PubMed ID: 33142632 [TBL] [Abstract][Full Text] [Related]
12. A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR. Aadland RC; Akarri S; Heggset EB; Syverud K; Torsæter O Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630280 [TBL] [Abstract][Full Text] [Related]
13. Tailoring structural properties, mechanical behavior and cellular performance of collagen hydrogel through incorporation of cellulose nanofibrils and cellulose nanocrystals: A comparative study. Torabizadeh F; Fadaie M; Mirzaei E; Sadeghi S; Nejabat GR Int J Biol Macromol; 2022 Oct; 219():438-451. PubMed ID: 35940434 [TBL] [Abstract][Full Text] [Related]
14. Comparison of structural, thermal and proton conductivity properties of micro- and nanocelluloses. Jankowska I; Pankiewicz R; Pogorzelec-Glaser K; Ławniczak P; Łapiński A; Tritt-Goc J Carbohydr Polym; 2018 Nov; 200():536-542. PubMed ID: 30177195 [TBL] [Abstract][Full Text] [Related]
15. Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Penttilä PA; Várnai A; Pere J; Tammelin T; Salmén L; Siika-aho M; Viikari L; Serimaa R Bioresour Technol; 2013 Feb; 129():135-41. PubMed ID: 23238342 [TBL] [Abstract][Full Text] [Related]
16. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099 [TBL] [Abstract][Full Text] [Related]
17. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. Jiang F; Hsieh YL ACS Appl Mater Interfaces; 2014 Nov; 6(22):20075-84. PubMed ID: 25341690 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103 [TBL] [Abstract][Full Text] [Related]
19. Green and Low-cost Production of Thermally Stable and Carboxylated Cellulose Nanocrystals and Nanofibrils Using Highly Recyclable Dicarboxylic Acids. Bian H; Chen L; Wang R; Zhu J J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117828 [TBL] [Abstract][Full Text] [Related]
20. Preparation of nanocellulose by a biological method from hemp stalk in contrast to the chemical method and its application on the electrospun composite film. Zhang X; Guo J; Liu Y; Hao X; Yao Q; Xu Y; Guo Y J Mater Chem B; 2023 May; 11(19):4191-4202. PubMed ID: 37128714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]