These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30965863)
1. Properties of Electrospun Nanofibers of Multi-Block Copolymers of [Poly-ε-caprolactone-b-poly(tetrahydrofuran-co-ε-caprolactone)] Shah MI; Yang Z; Li Y; Jiang L; Ling J Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965863 [TBL] [Abstract][Full Text] [Related]
2. Erratum: Shah, M.I., et al. Properties of Electrospun Nanofibers of Multi-Block Copolymers of [Poly-ε-Caprolactone-b-Poly(tetrahydrofuran- Shah MI; Yang Z; Li Y; Jiang L; Ling J Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33383980 [TBL] [Abstract][Full Text] [Related]
3. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds. Güney A; Malda J; Dhert WJA; Grijpma DW Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584 [TBL] [Abstract][Full Text] [Related]
4. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
5. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
6. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
7. Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. Kupka V; Dvořáková E; Manakhov A; Michlíček M; Petruš J; Vojtová L; Zajíčková L Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32580496 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization. Dai S; Li Z Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675 [TBL] [Abstract][Full Text] [Related]
10. Study the molecular structure of poly(ε-caprolactone)/graphene oxide and graphene nanocomposite nanofibers. Ramazani S; Karimi M J Mech Behav Biomed Mater; 2016 Aug; 61():484-492. PubMed ID: 27124805 [TBL] [Abstract][Full Text] [Related]
11. Fibrous Materials Made of Poly( Fernández D; Guerra M; Lisoni JG; Hoffmann T; Araya-Hermosilla R; Shibue T; Nishide H; Moreno-Villoslada I; Flores ME Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31597231 [TBL] [Abstract][Full Text] [Related]
12. Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Baker SR; Banerjee S; Bonin K; Guthold M Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():203-212. PubMed ID: 26652365 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications. Boakye MAD; Rijal NP; Adhikari U; Bhattarai N Materials (Basel); 2015 Jul; 8(7):4080-4095. PubMed ID: 28793426 [TBL] [Abstract][Full Text] [Related]
14. Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds. Wang Y; Wang G; Chen L; Li H; Yin T; Wang B; Lee JC; Yu Q Biofabrication; 2009 Mar; 1(1):015001. PubMed ID: 20811096 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of Biocompatible Electrospun Poly(ε-caprolactone)/Gelatin Nanofibers Loaded with Borges-Vilches J; Unalan I; Fernández K; Boccaccini AR Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745907 [TBL] [Abstract][Full Text] [Related]
16. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications. Massoumi B; Hatamzadeh M; Firouzi N; Jaymand M Mater Sci Eng C Mater Biol Appl; 2019 May; 98():300-310. PubMed ID: 30813032 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of novel electrospun poly(ϵ-caprolactone)-based nanofibrous scaffolds. Valizadeh A; Bakhtiary M; Akbarzadeh A; Salehi R; Frakhani SM; Ebrahimi O; Rahmati-yamchi M; Davaran S Artif Cells Nanomed Biotechnol; 2016; 44(2):504-9. PubMed ID: 25307268 [TBL] [Abstract][Full Text] [Related]
18. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability. Liu KL; Choo ES; Wong SY; Li X; He CB; Wang J; Li J J Phys Chem B; 2010 Jun; 114(22):7489-98. PubMed ID: 20469884 [TBL] [Abstract][Full Text] [Related]
19. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization. Yuan W; Yuan J; Zhang F; Xie X Biomacromolecules; 2007 Apr; 8(4):1101-8. PubMed ID: 17326679 [TBL] [Abstract][Full Text] [Related]