These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 30965866)
1. Towards Flexible Dielectric Materials with High Dielectric Constant and Low Loss: PVDF Nanocomposites with both Homogenously Dispersed CNTs and Ionic Liquids Nanodomains. Wang Y; Xing C; Guan J; Li Y Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965866 [TBL] [Abstract][Full Text] [Related]
2. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties. Kumar GS; Vishnupriya D; Chary KS; Patro TU Nanotechnology; 2016 Sep; 27(38):385702. PubMed ID: 27513068 [TBL] [Abstract][Full Text] [Related]
3. Constructing a Microcapacitor Network of Carbon Nanotubes in Polymer Blends via Crystallization-Induced Phase Separation Toward High Dielectric Constant and Low Loss. Mao HJ; Liu DF; Zhang N; Huang T; Kühnert I; Yang JH; Wang Y ACS Appl Mater Interfaces; 2020 Jun; 12(23):26444-26454. PubMed ID: 32425040 [TBL] [Abstract][Full Text] [Related]
4. Durable Anti-Superbug Polymers: Covalent Bonding of Ionic Liquid onto the Polymer Chains. Guan J; Wang Y; Wu S; Li Y; Li J Biomacromolecules; 2017 Dec; 18(12):4364-4372. PubMed ID: 29111688 [TBL] [Abstract][Full Text] [Related]
5. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. Wang D; Bao Y; Zha JW; Zhao J; Dang ZM; Hu GH ACS Appl Mater Interfaces; 2012 Nov; 4(11):6273-9. PubMed ID: 23110437 [TBL] [Abstract][Full Text] [Related]
6. Local Grafting of Ionic Liquid in Poly(vinylidene fluoride) Amorphous Region and the Subsequent Microphase Separation Behavior in Melt. Xing C; Li J; Yang C; Li Y Macromol Rapid Commun; 2016 Oct; 37(19):1559-1565. PubMed ID: 27376709 [TBL] [Abstract][Full Text] [Related]
7. Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement. Mandal A; Nandi AK ACS Appl Mater Interfaces; 2013 Feb; 5(3):747-60. PubMed ID: 23281687 [TBL] [Abstract][Full Text] [Related]
8. Tuning the Network Structure in Poly(vinylidene fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity. Ke K; Pötschke P; Wiegand N; Krause B; Voit B ACS Appl Mater Interfaces; 2016 Jun; 8(22):14190-9. PubMed ID: 27171017 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites. Yu S; Juay YK; Young MS J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586 [TBL] [Abstract][Full Text] [Related]
10. Significantly Enhanced Energy Density by Tailoring the Interface in Hierarchically Structured TiO Prateek ; Bhunia R; Siddiqui S; Garg A; Gupta RK ACS Appl Mater Interfaces; 2019 Apr; 11(15):14329-14339. PubMed ID: 30892860 [TBL] [Abstract][Full Text] [Related]
12. Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). Xing C; Zhao L; You J; Dong W; Cao X; Li Y J Phys Chem B; 2012 Jul; 116(28):8312-20. PubMed ID: 22702652 [TBL] [Abstract][Full Text] [Related]
13. High Dielectric and Mechanical Properties Achieved in Cross-Linked PVDF/α-SiC Nanocomposites with Elevated Compatibility and Induced Polarization at the Interface. Feng Y; Miao B; Gong H; Xie Y; Wei X; Zhang Z ACS Appl Mater Interfaces; 2016 Jul; 8(29):19054-65. PubMed ID: 27377185 [TBL] [Abstract][Full Text] [Related]
14. Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. Sharma M; Singh MP; Srivastava C; Madras G; Bose S ACS Appl Mater Interfaces; 2014 Dec; 6(23):21151-60. PubMed ID: 25383935 [TBL] [Abstract][Full Text] [Related]
16. Tuning the Piezoresistive Behavior of Poly(Vinylidene Fluoride)/Carbon Nanotube Composites Using Poly(Methyl Methacrylate). Tang X; Pötschke P; Pionteck J; Li Y; Formanek P; Voit B ACS Appl Mater Interfaces; 2020 Sep; 12(38):43125-43137. PubMed ID: 32897046 [TBL] [Abstract][Full Text] [Related]
17. An Ionic Liquid as Interface Linker for Tuning Piezoresistive Sensitivity and Toughness in Poly(vinylidene fluoride)/Carbon Nanotube Composites. Ke K; Pötschke P; Gao S; Voit B ACS Appl Mater Interfaces; 2017 Feb; 9(6):5437-5446. PubMed ID: 28080021 [TBL] [Abstract][Full Text] [Related]
18. Achieving high performance poly(vinylidene fluoride) dielectric composites Xie X; He ZZ; Qi XD; Yang JH; Lei YZ; Wang Y Chem Sci; 2019 Sep; 10(35):8224-8235. PubMed ID: 31673322 [TBL] [Abstract][Full Text] [Related]
19. High-Energy-Density Polymer Nanocomposites Composed of Newly Structured One-Dimensional BaTiO Pan Z; Yao L; Zhai J; Fu D; Shen B; Wang H ACS Appl Mater Interfaces; 2017 Feb; 9(4):4024-4033. PubMed ID: 28068471 [TBL] [Abstract][Full Text] [Related]
20. Enhanced dielectric properties of PVDF polymer nanocomposites: A study on gold-decorated, surface-modified multiwalled carbon nanotubes. Sreejivungsa K; Thongbai P Heliyon; 2024 Feb; 10(4):e26693. PubMed ID: 38434029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]