These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 30966026)

  • 21. Advances in the Fabrication and Characterization of Superhydrophobic Surfaces Inspired by the Lotus Leaf.
    Farzam M; Beitollahpoor M; Solomon SE; Ashbaugh HS; Pesika NS
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mussel-Inspired Polyglycerol Coatings with Controlled Wettability: From Superhydrophilic to Superhydrophobic Surface Coatings.
    Schlaich C; Wei Q; Haag R
    Langmuir; 2017 Sep; 33(38):9508-9520. PubMed ID: 28605191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water.
    Parbat D; Gaffar S; Rather AM; Gupta A; Manna U
    Chem Sci; 2017 Sep; 8(9):6542-6554. PubMed ID: 28989680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superwetting Polymeric Three Dimensional (3D) Porous Materials for Oil/Water Separation: A Review.
    Guan Y; Cheng F; Pan Z
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31064062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intelligent Coatings with Controlled Wettability for Oil-Water Separation.
    Fan S; Li Y; Wang R; Ma W; Shi Y; Fan W; Zhuo K; Xu G
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel reversibly switchable wettability of superhydrophobic-superhydrophilic surfaces induced by charge injection and heating.
    Ye X; Hou J; Cai D
    Beilstein J Nanotechnol; 2019; 10():840-847. PubMed ID: 31019871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinspired micro/nano structured aluminum with multifaceted applications.
    Mandal P; Ivvala J; Arora HS; Ghosh SK; Grewal HS
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112311. PubMed ID: 34979496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic Natural and Artificial Surfaces-A Structural Approach.
    Avrămescu RE; Ghica MV; Dinu-Pîrvu C; Prisada R; Popa L
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29789488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity.
    Hua Z; Yang J; Wang T; Liu G; Zhang G
    Langmuir; 2013 Aug; 29(33):10307-12. PubMed ID: 23915149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaporation-induced transition from Nepenthes pitcher-inspired slippery surfaces to lotus leaf-inspired superoleophobic surfaces.
    Zhang J; Wu L; Li B; Li L; Seeger S; Wang A
    Langmuir; 2014 Dec; 30(47):14292-9. PubMed ID: 25378097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-inspired Edible Superhydrophobic Interface for Reducing Residual Liquid Food.
    Li Y; Bi J; Wang S; Zhang T; Xu X; Wang H; Cheng S; Zhu BW; Tan M
    J Agric Food Chem; 2018 Mar; 66(9):2143-2150. PubMed ID: 29444564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of Chemical Surface Treatment for Laser-Textured Metal Alloys to Achieve Extreme Wetting Behavior.
    Samanta A; Huang W; Chaudhry H; Wang Q; Shaw SK; Ding H
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18032-18045. PubMed ID: 32208599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Smart Copolymer-Functionalized Flexible Surfaces with Photoswitchable Wettability: From Superhydrophobicity with "Rose Petal" Effect to Superhydrophilicity.
    Zong C; Hu M; Azhar U; Chen X; Zhang Y; Zhang S; Lu C
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25436-25444. PubMed ID: 31268647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-inspired special wettability in oral antibacterial applications.
    Zhang X; Bai R; Sun Q; Zhuang Z; Zhang Y; Chen S; Han B
    Front Bioeng Biotechnol; 2022; 10():1001616. PubMed ID: 36110327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review on nature-inspired gating membranes: From concept to design and applications.
    Bazyar H; Moultos OA; Lammertink RGH
    J Chem Phys; 2022 Oct; 157(14):144704. PubMed ID: 36243535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.