BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30966192)

  • 1. Compression Creep and Thermal Ratcheting Behavior of High Density Polyethylene (HDPE).
    Kanthabhabha Jeya RP; Bouzid AH
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
    Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of creep and creep-recovery on ratcheting strain of articular cartilage under cyclic compression.
    Gao L; Liu D; Gao H; Lv L; Zhang C
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():988-997. PubMed ID: 30423787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ratcheting-fatigue behavior of trabecular bone under cyclic tensile-compressive loading.
    Lin X; Zhao J; Gao L; Zhang C; Gao H
    J Mech Behav Biomed Mater; 2020 Dec; 112():104003. PubMed ID: 32823002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.
    Alothman OY; Fouad H; Al-Zahrani SM; Eshra A; Al Rez MF; Ansari SG
    Biomed Eng Online; 2014 Aug; 13():125. PubMed ID: 25168723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural Creep Behavior of High-Density Polyethylene Lumber and Wood Plastic Composite Lumber Made from Thermally Modified Wood.
    Alrubaie MAA; Lopez-Anido RA; Gardner DJ
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Tensile Creep Behavior for High-Density Polyethylene (HDPE) via Experiments and Mathematical Model.
    Mao Q; Su B; Ma R; Li Z
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum.
    Babu PN; Pal S
    J Mol Graph Model; 2023 Jan; 118():108376. PubMed ID: 36413920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Extractives on Dimensional Stability, Dynamic Mechanical Properties, Creep, and Stress Relaxation of Rice Straw/High-Density Polyethylene Composites.
    Wang H; Lin F; Qiu P; Liu T
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of nanoscopic dynamic mechanical properties and B-C-N triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: An insight into medical applications.
    Badgayan ND; Sahu SK; Samanta S; Rama Sreekanth PS
    J Mech Behav Biomed Mater; 2018 Apr; 80():180-188. PubMed ID: 29427934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratcheting behavior of articular cartilage under cyclic unconfined compression.
    Gao LL; Qin XY; Zhang CQ; Gao H; Ge HY; Zhang XZ
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():371-7. PubMed ID: 26354278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep behavior of bagasse fiber reinforced polymer composites.
    Xu Y; Wu Q; Lei Y; Yao F
    Bioresour Technol; 2010 May; 101(9):3280-6. PubMed ID: 20064712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
    Yoon M; Kim G; Kim Y; Lee T; Choe G; Hwang E; Nam J
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Activation Energy of Strain Bursts during Nanoindentation Creep on Polyethylene.
    Ghomsheh MZ; Khatibi G
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High density polyethylene/graphite nano-composites for total hip joint replacements: processing and in vitro characterization.
    Fouad H; Elleithy R
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1376-83. PubMed ID: 21783148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratcheting Behavior of Intervertebral Discs Under Cyclic Compression: Experiment and Prediction.
    Zhang CQ; Zhang T; Gao L; Du CF; Liu Q; Liu HY; Wang X
    Orthop Surg; 2019 Oct; 11(5):895-902. PubMed ID: 31663289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lifetime Predictions for High-Density Polyethylene under Creep: Experiments and Modeling.
    Drozdov AD; Høj Jermiin R; de Claville Christiansen J
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time-Temperature Superposition Principle.
    Yang TC; Chien YC; Wu TL; Hung KC; Wu JH
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spark Plasma Sintering Apparatus Used for High-temperature Compressive Creep Tests.
    Ratzker B; Kalabukhov S; Frage N
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31952204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate.
    Amjadi M; Fatemi A
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32824990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.