BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 30966220)

  • 1. Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality.
    González-Nieto D; Fernández-García L; Pérez-Rigueiro J; Guinea GV; Panetsos F
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogels for neuroprotection and functional rewiring: a new era for brain engineering.
    Fernandez-Serra R; Gallego R; Lozano P; González-Nieto D
    Neural Regen Res; 2020 May; 15(5):783-789. PubMed ID: 31719237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine.
    Flégeau K; Pace R; Gautier H; Rethore G; Guicheux J; Le Visage C; Weiss P
    Adv Colloid Interface Sci; 2017 Sep; 247():589-609. PubMed ID: 28754381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
    Yang J; Zhang YS; Yue K; Khademhosseini A
    Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine.
    Bartlett RD; Eleftheriadou D; Evans R; Choi D; Phillips JB
    Biomaterials; 2020 Nov; 258():120303. PubMed ID: 32858388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel Scaffolds: Towards Restitution of Ischemic Stroke-Injured Brain.
    Gopalakrishnan A; Shankarappa SA; Rajanikant GK
    Transl Stroke Res; 2019 Feb; 10(1):1-18. PubMed ID: 30151667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration.
    Zeimaran E; Pourshahrestani S; Fathi A; Razak NABA; Kadri NA; Sheikhi A; Baino F
    Acta Biomater; 2021 Dec; 136():1-36. PubMed ID: 34562661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrative review of the choices of stem cell sources and hydrogels for cartilage tissue engineering.
    Deng Z; Jin J; Wang S; Qi F; Chen X; Liu C; Li Y; Ma Y; Lyu F; Zheng Q
    Ann Transl Med; 2020 Dec; 8(23):1598. PubMed ID: 33437797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational Applications of Hydrogels.
    Correa S; Grosskopf AK; Lopez Hernandez H; Chan D; Yu AC; Stapleton LM; Appel EA
    Chem Rev; 2021 Sep; 121(18):11385-11457. PubMed ID: 33938724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume.
    Ghuman H; Gerwig M; Nicholls FJ; Liu JR; Donnelly J; Badylak SF; Modo M
    Acta Biomater; 2017 Nov; 63():50-63. PubMed ID: 28917705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of extracellular cues of hydrogel biomaterials on stem cell fate.
    Barnett H; Shevchuk M; Peppas NA; Caldorera-Moore M
    J Biomater Sci Polym Ed; 2022 Jul; 33(10):1324-1347. PubMed ID: 35297325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.
    Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY
    Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation.
    Vainieri ML; Lolli A; Kops N; D'Atri D; Eglin D; Yayon A; Alini M; Grad S; Sivasubramaniyan K; van Osch GJVM
    Acta Biomater; 2020 Jan; 101():293-303. PubMed ID: 31726249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application.
    Chen T; Hou K; Ren Q; Chen G; Wei P; Zhu M
    Macromol Rapid Commun; 2018 Nov; 39(21):e1800337. PubMed ID: 30118163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining and designing polymers and hydrogels for neural tissue engineering.
    Aurand ER; Lampe KJ; Bjugstad KB
    Neurosci Res; 2012 Mar; 72(3):199-213. PubMed ID: 22192467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage.
    Jiménez G; Venkateswaran S; López-Ruiz E; Perán M; Pernagallo S; Díaz-Monchón JJ; Canadas RF; Antich C; Oliveira JM; Callanan A; Walllace R; Reis RL; Montañez E; Carrillo E; Bradley M; Marchal JA
    Acta Biomater; 2019 May; 90():146-156. PubMed ID: 30910621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate-based hydrogels show the same complex mechanical behavior as brain tissue.
    Distler T; Schaller E; Steinmann P; Boccaccini AR; Budday S
    J Mech Behav Biomed Mater; 2020 Nov; 111():103979. PubMed ID: 32854073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of aliphatic polyester hydrogel for cardiac tissue engineering.
    Dhingra S; Weisel RD; Li RK
    Methods Mol Biol; 2014; 1181():51-9. PubMed ID: 25070326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.