BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30966290)

  • 1. Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(ε-caprolactone) Networks and Enable Self-Healing.
    Farhan M; Rudolph T; Nöchel U; Kratz K; Lendlein A
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH).
    Rodriguez ED; Luo X; Mather PT
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):152-61. PubMed ID: 21250636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ X-Ray Scattering Studies of Poly(ε-caprolactone) Networks with Grafted Poly(ethylene glycol) Chains to Investigate Structural Changes during Dual- and Triple-Shape Effect.
    Wagermaier W; Zander T; Hofmann D; Kratz K; Narendra Kumar U; Lendlein A
    Macromol Rapid Commun; 2010 Sep; 31(17):1546-53. PubMed ID: 21567565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.
    Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A
    Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Semicrystalline Polymer as Actuators Driven by Organic Solvent Vapor.
    Hou G; Wang F; Qu Z; Cheng Z; Zhang Y; Cai S; Xie T; Feng X
    Macromol Rapid Commun; 2018 Apr; 39(7):e1700716. PubMed ID: 29314371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural control of self-healing silica-poly(tetrahydropyran)-poly(ε-caprolactone) hybrids.
    Fan W; Youngman RE; Ren X; Yu D; Smedskjaer MM
    J Mater Chem B; 2021 Jun; 9(21):4400-4410. PubMed ID: 34019617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers.
    Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW
    Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of nanocomposites based on semi-interpenetrating network of [L-poly (epsilon-caprolactone)]/[net-poly (epsilon-caprolactone)] and hydroxyapatite nanocrystals.
    Hao J; Liu Y; Zhou S; Li Z; Deng X
    Biomaterials; 2003 Apr; 24(9):1531-9. PubMed ID: 12559813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of Crystallinity and Crosslinking Density on the Shape Recovery Force in Poly(ε-Caprolactone)-Based Shape-Memory Polymer Blends.
    Fulati A; Uto K; Ebara M
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Polystyrene Monoliths Prepared from
    Utroša P; Žagar E; Kovačič S; Pahovnik D
    Macromolecules; 2019 Feb; 52(3):819-826. PubMed ID: 31496541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-crosslinked poly(epsilon-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations.
    Wang S; Yaszemski MJ; Knight AM; Gruetzmacher JA; Windebank AJ; Lu L
    Acta Biomater; 2009 Jun; 5(5):1531-42. PubMed ID: 19171506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Decrosslinking in Liquid Crystal Polymer Actuators for Optical Reconfiguration of Origami and Light-Fueled Locomotion.
    Jiang ZC; Xiao YY; Tong X; Zhao Y
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5332-5337. PubMed ID: 30816599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Nanoscale Semi-IPNs with an Interconnected Microporous Structure via Cationic Polymerization of Bio-Based Tung Oil in a Homogeneous Solution of Poly(ε-caprolactone).
    Madbouly SA; Kessler MR
    ACS Omega; 2020 May; 5(17):9977-9984. PubMed ID: 32391485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.
    Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU
    J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Development of Nanocomposite Covalent Associative Networks Based on Polycaprolactone and Reduced Graphite Oxide.
    Vallin A; Battegazzore D; Damonte G; Fina A; Monticelli O
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCL-Based Shape Memory Polymer Semi-IPNs: The Role of Miscibility in Tuning the Degradation Rate.
    Pfau MR; McKinzey KG; Roth AA; Grunlan MA
    Biomacromolecules; 2020 Jun; 21(6):2493-2501. PubMed ID: 32395984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape memory polymer (SMP) scaffolds with improved self-fitting properties.
    Pfau MR; McKinzey KG; Roth AA; Graul LM; Maitland DJ; Grunlan MA
    J Mater Chem B; 2021 May; 9(18):3826-3837. PubMed ID: 33979417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution.
    Friess F; Wischke C; Behl M; Lendlein A
    J Appl Biomater Funct Mater; 2012; 10(3):273-9. PubMed ID: 23242870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of EtO Sterilization for Polydopamine-coated, Self-fitting Bone Scaffolds.
    Houk CJ; Beltran FO; Grunlan MA
    Polym Degrad Stab; 2021 Dec; 194():. PubMed ID: 34840360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape memory poly(ε-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and two-way actuation.
    Baker RM; Henderson JH; Mather PT
    J Mater Chem B; 2013 Oct; 1(38):4916-4920. PubMed ID: 32261080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.