These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83. Three-Dimensional-Printed Shape Memory Biomass Composites for Thermal-Responsive Devices. Bi H; Jia X; Ye G; Ren Z; Yang H; Guo R; Xu M; Cai L; Huang Z 3D Print Addit Manuf; 2020 Aug; 7(4):170-180. PubMed ID: 36654926 [TBL] [Abstract][Full Text] [Related]
84. Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites. Liu Y; Li Y; Chen H; Yang G; Zheng X; Zhou S Carbohydr Polym; 2014 Apr; 104():101-8. PubMed ID: 24607166 [TBL] [Abstract][Full Text] [Related]
85. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917 [TBL] [Abstract][Full Text] [Related]
86. Permanent Shape Reconfiguration and Locally Reversible Actuation of a Carbon Nanotube/Ethylene Vinyl Acetate Copolymer Composite by Constructing a Dynamic Cross-Linked Network. Ma RY; Sun WJ; Xu L; Jia LC; Yan DX; Li ZM ACS Appl Mater Interfaces; 2023 Aug; 15(34):40954-40962. PubMed ID: 37584965 [TBL] [Abstract][Full Text] [Related]
87. Enhanced Mechanical Properties of Multiscale Carbon Fiber/Epoxy Unidirectional Composites with Different Dimensional Carbon Nanofillers. Liu Y; Zhang DD; Cui GY; Luo RY; Zhao DL Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32858933 [TBL] [Abstract][Full Text] [Related]
88. Capric Acid Hybridizing Fly Ash and Carbon Nanotubes as a Novel Shape-Stabilized Phase Change Material for Thermal Energy Storage. Liu P; Gu X; Zhang Z; Rao J; Shi J; Wang B; Bian L ACS Omega; 2019 Sep; 4(12):14962-14969. PubMed ID: 31552337 [TBL] [Abstract][Full Text] [Related]
89. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Mohd Nurazzi N; Asyraf MRM; Khalina A; Abdullah N; Sabaruddin FA; Kamarudin SH; Ahmad S; Mahat AM; Lee CL; Aisyah HA; Norrrahim MNF; Ilyas RA; Harussani MM; Ishak MR; Sapuan SM Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33810584 [TBL] [Abstract][Full Text] [Related]
90. Electromechanical Properties of Smart Vitrimers Reinforced with Carbon Nanotubes for SHM Applications. Gómez-Sánchez J; Sánchez-Romate XF; Espadas FJ; Prolongo SG; Jiménez-Suárez A Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339523 [TBL] [Abstract][Full Text] [Related]
91. Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes. Hollertz R; Chatterjee S; Gutmann H; Geiger T; Nüesch FA; Chu BT Nanotechnology; 2011 Mar; 22(12):125702. PubMed ID: 21317490 [TBL] [Abstract][Full Text] [Related]
92. A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications. Barra G; Guadagno L; Raimondo M; Santonicola MG; Toto E; Vecchio Ciprioti S Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765641 [TBL] [Abstract][Full Text] [Related]
93. Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties-A Comprehensive Review. Jamil H; Faizan M; Adeel M; Jesionowski T; Boczkaj G; Balčiūnaitė A Molecules; 2024 Mar; 29(6):. PubMed ID: 38542903 [TBL] [Abstract][Full Text] [Related]
94. Thermal/Near-Infrared Light Dual-Responsive Reversible Two-Way Shape Memory cEVA/2D-MoO Hao C; Wei C; Wang Y; Sun Z; Liu H; Dai R; Huang M; He S; Liu W; Zhu C Macromol Rapid Commun; 2021 Jun; 42(11):e2100056. PubMed ID: 33729614 [TBL] [Abstract][Full Text] [Related]
95. Facile Surface Depolymerization Promotes the Welding of Hard Epoxy Vitrimer. An L; Zhao W Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806612 [TBL] [Abstract][Full Text] [Related]
96. Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers. Chen Q; Yu X; Pei Z; Yang Y; Wei Y; Ji Y Chem Sci; 2017 Jan; 8(1):724-733. PubMed ID: 28616137 [TBL] [Abstract][Full Text] [Related]
97. Multishape Programming of Shape Memory Polymer Assemblies Fabricated by Vat Photopolymerization-Based 3D Printing and Interfacial Welding. Liu Y; Yang B; Song C; Zhao Q; Xie T; Fang Z; Wu J ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38037349 [TBL] [Abstract][Full Text] [Related]
98. Study of Correlation between Structure and Shape-Memory Effect/Drug-Release Profile of Polyurethane/Hydroxyapatite Composites for Antibacterial Implants. Bil M; Jurczyk-Kowalska M; Kopeć K; Heljak M Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850222 [TBL] [Abstract][Full Text] [Related]
99. High-energy-density shape memory materials with ultrahigh strain for reconfigurable artificial muscles. Zheng X; Chen Y; Chen C; Chen Z; Guo Y; Li H; Liu H J Mater Chem B; 2021 Sep; 9(36):7371-7380. PubMed ID: 34551055 [TBL] [Abstract][Full Text] [Related]
100. Chemical Valorization of Cashew Nut Shell Waste. Mubofu EB; Mgaya JE Top Curr Chem (Cham); 2018 Feb; 376(2):8. PubMed ID: 29442189 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]