These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30966559)

  • 1. Modeling the Viscoelastic Hysteresis of Dielectric Elastomer Actuators with a Modified Rate-Dependent Prandtl⁻Ishlinskii Model.
    Zou J; Gu G
    Polymers (Basel); 2018 May; 10(5):. PubMed ID: 30966559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators.
    Jiang H; Ji H; Qiu J; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1200-10. PubMed ID: 20442032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Asymmetric Hysteresis Modeling and Compensation of Piezoelectric Actuators with PMPI Model.
    Wang W; Wang J; Chen Z; Wang R; Lu K; Sang Z; Ju B
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32235522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Digitized Representation of the Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Piezoelectric Actuator Hysteresis.
    Zhou C; Feng C; Aye YN; Ang WT
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators.
    Gan J; Zhang X; Wu H
    Rev Sci Instrum; 2016 Mar; 87(3):035002. PubMed ID: 27036808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic modeling of dielectric elastomer actuator with conical shape.
    Huang P; Ye W; Wang Y
    PLoS One; 2020; 15(8):e0235229. PubMed ID: 32797117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model.
    Gu GY; Yang MJ; Zhu LM
    Rev Sci Instrum; 2012 Jun; 83(6):065106. PubMed ID: 22755661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl-Ishlinskii model.
    Zang X; Liu Y; Heng S; Lin Z; Zhao J
    Biomed Mater Eng; 2017; 28(2):131-140. PubMed ID: 28372266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model.
    Nguyen T; Li J; Sun L; Tran D; Xuan F
    Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and compensation of hysteresis in piezoelectric actuators.
    Yu Z; Wu Y; Fang Z; Sun H
    Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model.
    An D; Li H; Xu Y; Zhang L
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithic Stacked Dielectric Elastomer Actuators.
    Shintake J; Ichige D; Kanno R; Nagai T; Shimizu K
    Front Robot AI; 2021; 8():714332. PubMed ID: 34901169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling dynamic behavior of dielectric elastomer muscle for robotic applications.
    Jeong SM; Mun H; Yun S; Kyung KU
    Front Bioeng Biotechnol; 2023; 11():1006346. PubMed ID: 36845178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and Compensation for Asymmetrical and Dynamic Hysteresis of Piezoelectric Actuators Using a Dynamic Delay Prandtl-Ishlinskii Model.
    Wang W; Han F; Chen Z; Wang R; Wang C; Lu K; Wang J; Ju B
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and Compensation of Dynamic Hysteresis with Force-Voltage Coupling for Piezoelectric Actuators.
    Wang W; Wang J; Wang R; Chen Z; Han F; Lu K; Wang C; Xu Z; Ju B
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced Bouc-Wen model for characterizing rate-dependent hysteresis of piezoelectric actuators.
    Gan J; Zhang X
    Rev Sci Instrum; 2018 Nov; 89(11):115002. PubMed ID: 30501291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of Rate-Independent and Symmetric Hysteresis Based on Madelung's Rules.
    Cao K; Li R
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30654573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of Rate-Dependent Hysteresis Using a GPO-Based Adaptive Filter.
    Zhang Z; Ma Y
    Sensors (Basel); 2016 Feb; 16(2):205. PubMed ID: 26861349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Modified Prandtl-Ishlinskii Hysteresis Model for Modeling and Compensating Asymmetric Hysteresis of Piezo-Actuated Flexure-Based Systems.
    Zhou C; Yuan M; Feng C; Ang WT
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.