BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30966614)

  • 1. Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane.
    Xu W; Xiao M; Yuan L; Zhang J; Hou Z
    Polymers (Basel); 2018 May; 10(6):. PubMed ID: 30966614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content.
    Zhang L; Zhang C; Zhang W; Zhang H; Hou Z
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1212-1226. PubMed ID: 31140366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility.
    Hou Z; Xu J; Teng J; Jia Q; Wang X
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110571. PubMed ID: 32228944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, Physicochemical Properties, and Hemocompatibility of the Composites Based on Biodegradable Poly(Ether-Ester-Urethane) and Phosphorylcholine-Containing Copolymer.
    Zhang J; Yang B; Jia Q; Xiao M; Hou Z
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31083573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mild method for surface-grafting MPC onto poly(ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency.
    Liu X; Yang B; Hou Z; Zhang N; Gao Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109952. PubMed ID: 31499985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites.
    Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ
    J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Tensile Properties, Biostability, and Biocompatibility of Siloxane-Cross-Linked Polyurethane Containing Ordered Hard Segments for Durable Implant Application.
    Wu X; Jia H; Fu W; Li M; Pan Y
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced hemocompatibility and antibacterial activity of biodegradable poly(ester-urethane) modified with quercetin and phosphorylcholine for durable blood-contacting applications.
    Hao T; Niu G; Zhang H; Zhu Y; Zhang C; Kong F; Xu J; Hou Z
    J Mater Chem B; 2023 Jun; 11(25):5846-5855. PubMed ID: 37291983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradable Poly(ether-ester-urethane)s Based on Well-Defined Aliphatic Diurethane Diisocyanate with Excellent Shape Recovery Properties at Body Temperature for Biomedical Application.
    Xiao M; Zhang N; Zhuang J; Sun Y; Ren F; Zhang W; Hou Z
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31195671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone).
    Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J
    J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mild Method for Surface-Grafting PEG Onto Segmented Poly(Ester-Urethane) Film with High Grafting Density for Biomedical Purpose.
    Liu L; Gao Y; Zhao J; Yuan L; Li C; Liu Z; Hou Z
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.
    Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M
    Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Method for Surface-Grafted Chitooligosaccharide on Medical Segmented Poly(ester-urethane) Film to Improve Surface Biocompatibility.
    Liu Y; Liu Z; Gao Y; Gao W; Hou Z; Zhu Y
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33406798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro.
    Jones DS; Djokic J; McCoy CP; Gorman SP
    Biomaterials; 2002 Dec; 23(23):4449-58. PubMed ID: 12322963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of conductive, biodegradable, elastomeric polyurethanes for biomedical applications.
    Xu C; Yepez G; Wei Z; Liu F; Bugarin A; Hong Y
    J Biomed Mater Res A; 2016 Sep; 104(9):2305-14. PubMed ID: 27124702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug molecule incorporation.
    Xu C; Kuriakose AE; Truong D; Punnakitikashem P; Nguyen KT; Hong Y
    J Mater Chem B; 2018 Nov; 6(44):7288-7297. PubMed ID: 30906556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyurethanes Crosslinked with Poly(vinyl alcohol) as a Slowly-Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine.
    Kucińska-Lipka J
    Materials (Basel); 2018 Feb; 11(3):. PubMed ID: 29495510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.