These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30966794)

  • 1. Towards an absolute scale for adhesion strength of ship hull microfouling.
    Oliveira DR; Larsson L; Granhag L
    Biofouling; 2019 Feb; 35(2):244-258. PubMed ID: 30966794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ship hull in-water cleaning and its effects on fouling-control coatings.
    Oliveira DR; Granhag L
    Biofouling; 2020 Mar; 36(3):332-350. PubMed ID: 32401553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economic impact of biofouling on a naval surface ship.
    Schultz MP; Bendick JA; Holm ER; Hertel WM
    Biofouling; 2011 Jan; 27(1):87-98. PubMed ID: 21161774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grooming using rotating brushes as a proactive method to control ship hull fouling.
    Tribou M; Swain G
    Biofouling; 2015; 31(4):309-19. PubMed ID: 25981344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transported biofilms and their influence on subsequent macrofouling colonization.
    Sweat LH; Swain GW; Hunsucker KZ; Johnson KB
    Biofouling; 2017 May; 33(5):433-449. PubMed ID: 28508710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of proactive in-water grooming to improve the performance of ship hull antifouling coatings.
    Tribou M; Swain G
    Biofouling; 2010 Jan; 26(1):47-56. PubMed ID: 20390556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating.
    Hunsucker KZ; Vora GJ; Hunsucker JT; Gardner H; Leary DH; Kim S; Lin B; Swain G
    Biofouling; 2018 Feb; 34(2):162-172. PubMed ID: 29347829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings.
    Zargiel KA; Swain GW
    Biofouling; 2014 Jan; 30(1):115-29. PubMed ID: 24279838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating.
    Hearin J; Hunsucker KZ; Swain G; Stephens A; Gardner H; Lieberman K; Harper M
    Biofouling; 2015; 31(8):625-38. PubMed ID: 26359541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hydrodynamic stress on the frictional drag of biofouling communities.
    Hunsucker JT; Hunsucker KZ; Gardner H; Swain G
    Biofouling; 2016 Nov; 32(10):1209-1221. PubMed ID: 27744722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring a critical stress for continuous prevention of marine biofouling accumulation with aeration.
    Menesses M; Belden J; Dickenson N; Bird J
    Biofouling; 2017 Oct; 33(9):703-711. PubMed ID: 28868927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings.
    Schultz MP; Walker JM; Steppe CN; Flack KA
    Biofouling; 2015; 31(9-10):759-73. PubMed ID: 26652667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of mechanical grooming at various frequencies on a large scale test panel coated with a fouling-release coating.
    Hearin J; Hunsucker KZ; Swain G; Gardner H; Stephens A; Lieberman K
    Biofouling; 2016; 32(5):561-9. PubMed ID: 27051969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental investigation into the surface and hydrodynamic characteristics of marine coatings with mimicked hull roughness ranges.
    Yeginbayeva IA; Atlar M
    Biofouling; 2018 Oct; 34(9):1001-1019. PubMed ID: 30537869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diatom community structure on in-service cruise ship hulls.
    Hunsucker KZ; Koka A; Lund G; Swain G
    Biofouling; 2014 Oct; 30(9):1133-40. PubMed ID: 25377486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of biological development effects on drag forces of ceramic hull coating using Reynolds-averaged Navier-Stokes-based solver.
    Sanz DS; GarcĂ­a S; Trueba A; Islam H; Soares CG
    Biofouling; 2023 Mar; 39(3):289-302. PubMed ID: 37154076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of grooming on a copper ablative coating: a six year study.
    Tribou M; Swain G
    Biofouling; 2017 Jul; 33(6):494-504. PubMed ID: 28604166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using ultraviolet light for improved antifouling performance on ship hull coatings.
    Hunsucker KZ; Braga C; Gardner H; Jongerius M; Hietbrink R; Salters B; Swain G
    Biofouling; 2019 Jul; 35(6):658-668. PubMed ID: 31385534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging marine environmental pollution and ecosystem disturbance in ship hull cleaning for biofouling removal.
    Kim DH; Alayande AB; Lee JM; Jang JH; Jo SM; Jae MR; Yang E; Chae KJ
    Sci Total Environ; 2024 Jan; 906():167459. PubMed ID: 37788783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diatom community structure on commercially available ship hull coatings.
    Zargiel KA; Coogan JS; Swain GW
    Biofouling; 2011 Oct; 27(9):955-65. PubMed ID: 21932984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.