These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30966956)

  • 1. Trait variation in extreme thermal environments under constant and fluctuating temperatures.
    Salinas S; Irvine SE; Schertzing CL; Golden SQ; Munch SB
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180177. PubMed ID: 30966956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short communication: Domesticated and wild fathead minnows differ in growth and thermal tolerance.
    Hirakawa KA; Salinas S
    J Therm Biol; 2020 Dec; 94():102784. PubMed ID: 33292977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constant and fluctuating temperature acclimations have similar effects on phenotypic plasticity in springtails.
    Hoskins JL; Janion-Scheepers C; Ireland E; Monro K; Chown SL
    J Therm Biol; 2020 Oct; 93():102690. PubMed ID: 33077113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluctuating heat stress during development exposes reproductive costs and putative benefits.
    Rodrigues LR; McDermott HA; Villanueva I; Djukarić J; Ruf LC; Amcoff M; Snook RR
    J Anim Ecol; 2022 Feb; 91(2):391-403. PubMed ID: 34775602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for lower plasticity in CT
    Kellermann V; Sgrò CM
    J Evol Biol; 2018 Sep; 31(9):1300-1312. PubMed ID: 29876997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternate patterns of temperature variation bring about very different disease outcomes at different mean temperatures.
    Kunze C; Luijckx P; Jackson AL; Donohue I
    Elife; 2022 Feb; 11():. PubMed ID: 35164901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures.
    Ketola T; Saarinen K
    J Evol Biol; 2015 Apr; 28(4):800-6. PubMed ID: 25704064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictability rather than amplitude of temperature fluctuations determines stress resistance in a natural population of Drosophila simulans.
    Manenti T; Sørensen JG; Moghadam NN; Loeschcke V
    J Evol Biol; 2014 Oct; 27(10):2113-22. PubMed ID: 25146297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.
    Firkus T; Rahel FJ; Bergman HL; Cherrington BD
    Environ Manage; 2018 Feb; 61(2):291-303. PubMed ID: 29124337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic responses of hatchlings to constant versus fluctuating incubation temperatures in the multi-banded krait, Bungarus multicintus (Elapidae).
    Ji X; Gao JF; Han J
    Zoolog Sci; 2007 Apr; 24(4):384-90. PubMed ID: 17867836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuating water temperatures affect development, physiological responses and cause sex reversal in fathead minnows.
    Coulter DP; Höök TO; Mahapatra CT; Guffey SC; Sepúlveda MS
    Environ Sci Technol; 2015 Feb; 49(3):1921-8. PubMed ID: 25587805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in
    Healy TM; Bock AK; Burton RS
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31597734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of protective mechanisms only partially explains interactive effects of temperature and UVR on upper thermal limits.
    Kern P; Cramp RL; Seebacher F; Ghanizadeh Kazerouni E; Franklin CE
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Dec; 190():75-82. PubMed ID: 26408107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the physiological performance of ectotherms in fluctuating thermal environments.
    Niehaus AC; Angilletta MJ; Sears MW; Franklin CE; Wilson RS
    J Exp Biol; 2012 Feb; 215(Pt 4):694-701. PubMed ID: 22279077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental temperatures and phenotypic plasticity in reptiles: a systematic review and meta-analysis.
    Noble DWA; Stenhouse V; Schwanz LE
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):72-97. PubMed ID: 28464349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus.
    Ivimey-Cook ER; Piani C; Hung WT; Berg EC
    J Evol Biol; 2024 Jan; 37(1):1-13. PubMed ID: 38285665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predation risk induces age- and sex-specific morphological plastic responses in the fathead minnow Pimephales promelas.
    Meuthen D; Ferrari MCO; Lane T; Chivers DP
    Sci Rep; 2019 Oct; 9(1):15378. PubMed ID: 31653876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B; Murray BR; Webb JK
    J Exp Biol; 2017 Jun; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity?
    Fischer K; Kölzow N; Höltje H; Karl I
    Oecologia; 2011 May; 166(1):23-33. PubMed ID: 21286923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.