BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 30966960)

  • 1. Within-generation and transgenerational plasticity of mate choice in oceanic stickleback under climate change.
    Fuxjäger L; Wanzenböck S; Ringler E; Wegner KM; Ahnelt H; Shama LNS
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180183. PubMed ID: 30966960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.
    Shama LN
    Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations.
    Shama LN; Wegner KM
    J Evol Biol; 2014 Nov; 27(11):2297-307. PubMed ID: 25264208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sexual selection, phenotypic plasticity and female reproductive output.
    Fox RJ; Fromhage L; Jennions MD
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180184. PubMed ID: 30966965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predator-induced maternal and paternal effects independently alter sexual selection.
    Lehto WR; Tinghitella RM
    Evolution; 2020 Feb; 74(2):404-418. PubMed ID: 31883271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conditions during early life influence seasonal maternal strategies in the three-spined stickleback.
    Kim SY; Metcalfe NB; da Silva A; Velando A
    BMC Ecol; 2017 Nov; 17(1):34. PubMed ID: 29126411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Coupling of Female Mate Choice with Polygenic Ecological Divergence Facilitates Stickleback Speciation.
    Bay RA; Arnegard ME; Conte GL; Best J; Bedford NL; McCann SR; Dubin ME; Chan YF; Jones FC; Kingsley DM; Schluter D; Peichel CL
    Curr Biol; 2017 Nov; 27(21):3344-3349.e4. PubMed ID: 29056455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Female stickleback prefer shallow males: Sexual selection on nest microhabitat.
    Bolnick DI; Shim KC; Brock CD
    Evolution; 2015 Jun; 69(6):1643-1653. PubMed ID: 25958935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No evidence for adjustment of maternal investment under alternative mate availability regimes.
    Weigel EG; Tinghitella RM; Boughman JW
    J Fish Biol; 2016 Feb; 88(2):508-22. PubMed ID: 26508506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex-specific plasticity across generations II: Grandpaternal effects are lineage specific and sex specific.
    Hellmann JK; Carlson ER; Bell AM
    J Anim Ecol; 2020 Dec; 89(12):2800-2812. PubMed ID: 33191513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental change mediates mate choice for an extended phenotype, but not for mate quality.
    Head ML; Fox RJ; Barber I
    Evolution; 2017 Jan; 71(1):135-144. PubMed ID: 27748950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predator-induced transgenerational plasticity of parental care behaviour in male three-spined stickleback fish across two generations.
    Hellmann JK; Keagy J; Carlson ER; Kempfer S; Bell AM
    Proc Biol Sci; 2024 Jan; 291(2014):20232582. PubMed ID: 38196352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Windows of opportunity: Ocean warming shapes temperature-sensitive epigenetic reprogramming and gene expression across gametogenesis and embryogenesis in marine stickleback.
    Fellous A; Wegner KM; John U; Mark FC; Shama LNS
    Glob Chang Biol; 2022 Jan; 28(1):54-71. PubMed ID: 34669228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential investment in pre- and post-mating male sexual traits in response to prolonged exposure to ambient UVB radiation in a fish.
    Vitt S; Bakker TCM; Rick IP
    Sci Total Environ; 2020 Apr; 712():136341. PubMed ID: 31931223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproductive character displacement of male stickleback mate preference: reinforcement or direct selection?
    Albert AY; Schluter D
    Evolution; 2004 May; 58(5):1099-107. PubMed ID: 15212390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-size responses during ontogeny are independent of progenitors' thermal environments.
    Martínez-De León G; Fahrni M; Thakur MP
    PeerJ; 2024; 12():e17432. PubMed ID: 38799056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Females sample more males at high nesting densities, but ultimately obtain less attractive mates.
    Tinghitella RM; Stehle C; Boughman JW
    BMC Evol Biol; 2015 Sep; 15():200. PubMed ID: 26385337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenerational plasticity and climate change experiments: Where do we go from here?
    Donelson JM; Salinas S; Munday PL; Shama LNS
    Glob Chang Biol; 2018 Jan; 24(1):13-34. PubMed ID: 29024256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear effects of female mate choice in wild threespine sticklebacks.
    Blais J; Rico C; Bernatchez L
    Evolution; 2004 Nov; 58(11):2498-510. PubMed ID: 15612293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conspicuous female ornamentation and tests of male mate preference in threespine sticklebacks (Gasterosteus aculeatus).
    Wright DS; Pierotti ME; Rundle HD; McKinnon JS
    PLoS One; 2015; 10(3):e0120723. PubMed ID: 25806520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.