These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 30966960)

  • 1. Within-generation and transgenerational plasticity of mate choice in oceanic stickleback under climate change.
    Fuxjäger L; Wanzenböck S; Ringler E; Wegner KM; Ahnelt H; Shama LNS
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180183. PubMed ID: 30966960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.
    Shama LN
    Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations.
    Shama LN; Wegner KM
    J Evol Biol; 2014 Nov; 27(11):2297-307. PubMed ID: 25264208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sexual selection, phenotypic plasticity and female reproductive output.
    Fox RJ; Fromhage L; Jennions MD
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180184. PubMed ID: 30966965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predator-induced maternal and paternal effects independently alter sexual selection.
    Lehto WR; Tinghitella RM
    Evolution; 2020 Feb; 74(2):404-418. PubMed ID: 31883271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conditions during early life influence seasonal maternal strategies in the three-spined stickleback.
    Kim SY; Metcalfe NB; da Silva A; Velando A
    BMC Ecol; 2017 Nov; 17(1):34. PubMed ID: 29126411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Coupling of Female Mate Choice with Polygenic Ecological Divergence Facilitates Stickleback Speciation.
    Bay RA; Arnegard ME; Conte GL; Best J; Bedford NL; McCann SR; Dubin ME; Chan YF; Jones FC; Kingsley DM; Schluter D; Peichel CL
    Curr Biol; 2017 Nov; 27(21):3344-3349.e4. PubMed ID: 29056455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Female stickleback prefer shallow males: Sexual selection on nest microhabitat.
    Bolnick DI; Shim KC; Brock CD
    Evolution; 2015 Jun; 69(6):1643-1653. PubMed ID: 25958935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No evidence for adjustment of maternal investment under alternative mate availability regimes.
    Weigel EG; Tinghitella RM; Boughman JW
    J Fish Biol; 2016 Feb; 88(2):508-22. PubMed ID: 26508506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex-specific plasticity across generations II: Grandpaternal effects are lineage specific and sex specific.
    Hellmann JK; Carlson ER; Bell AM
    J Anim Ecol; 2020 Dec; 89(12):2800-2812. PubMed ID: 33191513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental change mediates mate choice for an extended phenotype, but not for mate quality.
    Head ML; Fox RJ; Barber I
    Evolution; 2017 Jan; 71(1):135-144. PubMed ID: 27748950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Windows of opportunity: Ocean warming shapes temperature-sensitive epigenetic reprogramming and gene expression across gametogenesis and embryogenesis in marine stickleback.
    Fellous A; Wegner KM; John U; Mark FC; Shama LNS
    Glob Chang Biol; 2022 Jan; 28(1):54-71. PubMed ID: 34669228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predator-induced transgenerational plasticity of parental care behaviour in male three-spined stickleback fish across two generations.
    Hellmann JK; Keagy J; Carlson ER; Kempfer S; Bell AM
    Proc Biol Sci; 2024 Jan; 291(2014):20232582. PubMed ID: 38196352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential investment in pre- and post-mating male sexual traits in response to prolonged exposure to ambient UVB radiation in a fish.
    Vitt S; Bakker TCM; Rick IP
    Sci Total Environ; 2020 Apr; 712():136341. PubMed ID: 31931223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproductive character displacement of male stickleback mate preference: reinforcement or direct selection?
    Albert AY; Schluter D
    Evolution; 2004 May; 58(5):1099-107. PubMed ID: 15212390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-size responses during ontogeny are independent of progenitors' thermal environments.
    Martínez-De León G; Fahrni M; Thakur MP
    PeerJ; 2024; 12():e17432. PubMed ID: 38799056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Females sample more males at high nesting densities, but ultimately obtain less attractive mates.
    Tinghitella RM; Stehle C; Boughman JW
    BMC Evol Biol; 2015 Sep; 15():200. PubMed ID: 26385337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgenerational plasticity and climate change experiments: Where do we go from here?
    Donelson JM; Salinas S; Munday PL; Shama LNS
    Glob Chang Biol; 2018 Jan; 24(1):13-34. PubMed ID: 29024256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear effects of female mate choice in wild threespine sticklebacks.
    Blais J; Rico C; Bernatchez L
    Evolution; 2004 Nov; 58(11):2498-510. PubMed ID: 15612293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conspicuous female ornamentation and tests of male mate preference in threespine sticklebacks (Gasterosteus aculeatus).
    Wright DS; Pierotti ME; Rundle HD; McKinnon JS
    PLoS One; 2015; 10(3):e0120723. PubMed ID: 25806520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.