These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 30967126)
1. DeepHistone: a deep learning approach to predicting histone modifications. Yin Q; Wu M; Liu Q; Lv H; Jiang R BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126 [TBL] [Abstract][Full Text] [Related]
2. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells. Shin JH; Xu L; Li RW; Gao Y; Bickhart D; Liu GE; Baldwin R; Li CJ Anim Genet; 2014 Aug; 45 Suppl 1():40-50. PubMed ID: 24990294 [TBL] [Abstract][Full Text] [Related]
3. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features. Kumar S; Bucher P BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008 [TBL] [Abstract][Full Text] [Related]
4. Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Terrenoire E; McRonald F; Halsall JA; Page P; Illingworth RS; Taylor AM; Davison V; O'Neill LP; Turner BM Genome Biol; 2010; 11(11):R110. PubMed ID: 21078160 [TBL] [Abstract][Full Text] [Related]
5. NUCLIZE for quantifying epigenome: generating histone modification data at single-nucleosome resolution using genuine nucleosome positions. Zheng D; Trynda J; Sun Z; Li Z BMC Genomics; 2019 Jul; 20(1):541. PubMed ID: 31266464 [TBL] [Abstract][Full Text] [Related]
6. Predicting regulatory variants using a dense epigenomic mapped CNN model elucidated the molecular basis of trait-tissue associations. Pei G; Hu R; Dai Y; Manuel AM; Zhao Z; Jia P Nucleic Acids Res; 2021 Jan; 49(1):53-66. PubMed ID: 33300042 [TBL] [Abstract][Full Text] [Related]
7. Histone modifications for human epigenome analysis. Kimura H J Hum Genet; 2013 Jul; 58(7):439-45. PubMed ID: 23739122 [TBL] [Abstract][Full Text] [Related]
8. dHICA: a deep transformer-based model enables accurate histone imputation from chromatin accessibility. Wen W; Zhong J; Zhang Z; Jia L; Chu T; Wang N; Danko CG; Wang Z Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39316943 [TBL] [Abstract][Full Text] [Related]
9. Practical Guidelines for High-Resolution Epigenomic Profiling of Nucleosomal Histones in Postmortem Human Brain Tissue. Kundakovic M; Jiang Y; Kavanagh DH; Dincer A; Brown L; Pothula V; Zharovsky E; Park R; Jacobov R; Magro I; Kassim B; Wiseman J; Dang K; Sieberts SK; Roussos P; Fromer M; Harris B; Lipska BK; Peters MA; Sklar P; Akbarian S Biol Psychiatry; 2017 Jan; 81(2):162-170. PubMed ID: 27113501 [TBL] [Abstract][Full Text] [Related]
10. Prediction of histone post-translational modifications using deep learning. Baisya DR; Lonardi S Bioinformatics; 2021 Apr; 36(24):5610-5617. PubMed ID: 33367499 [TBL] [Abstract][Full Text] [Related]
11. An Integrated Platform for Genome-wide Mapping of Chromatin States Using High-throughput ChIP-sequencing in Tumor Tissues. Terranova C; Tang M; Orouji E; Maitituoheti M; Raman A; Amin S; Liu Z; Rai K J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683440 [TBL] [Abstract][Full Text] [Related]
12. Methods for ChIP-seq analysis: A practical workflow and advanced applications. Nakato R; Sakata T Methods; 2021 Mar; 187():44-53. PubMed ID: 32240773 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Dynamic Relationship Between Cellular Metabolism and Chromatin Structure Using SILAC-Mass Spec and ChIP-Sequencing. Mews P; Berger SL Methods Enzymol; 2016; 574():311-329. PubMed ID: 27423866 [TBL] [Abstract][Full Text] [Related]
14. A computational approach for the functional classification of the epigenome. Gandolfi F; Tramontano A Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787 [TBL] [Abstract][Full Text] [Related]
15. Identifying dispersed epigenomic domains from ChIP-Seq data. Song Q; Smith AD Bioinformatics; 2011 Mar; 27(6):870-1. PubMed ID: 21325299 [TBL] [Abstract][Full Text] [Related]
16. Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification. Ku WL; Nakamura K; Gao W; Cui K; Hu G; Tang Q; Ni B; Zhao K Nat Methods; 2019 Apr; 16(4):323-325. PubMed ID: 30923384 [TBL] [Abstract][Full Text] [Related]
17. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. Hon G; Ren B; Wang W PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605 [TBL] [Abstract][Full Text] [Related]
18. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining. Park SH; Lee SM; Kim YJ; Kim S BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934 [TBL] [Abstract][Full Text] [Related]
19. TempoMAGE: a deep learning framework that exploits the causal dependency between time-series data to predict histone marks in open chromatin regions at time-points with missing ChIP-seq datasets. Hallal M; Awad M; Khoueiry P Bioinformatics; 2021 Dec; 37(23):4336-4342. PubMed ID: 34255822 [TBL] [Abstract][Full Text] [Related]
20. cChIP-seq: a robust small-scale method for investigation of histone modifications. Valensisi C; Liao JL; Andrus C; Battle SL; Hawkins RD BMC Genomics; 2015 Dec; 16():1083. PubMed ID: 26692029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]