These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 3096735)

  • 21. Occurrence and function of membrane teichoic acids.
    Lambert PA; Hancock IC; Baddiley J
    Biochim Biophys Acta; 1977 May; 472(1):1-12. PubMed ID: 406922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallographic analysis of TarI and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis.
    Li FKK; Gale RT; Petrotchenko EV; Borchers CH; Brown ED; Strynadka NCJ
    J Struct Biol; 2021 Jun; 213(2):107733. PubMed ID: 33819634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attachment of the main chain to the linkage unit in biosynthesis of teichoic acids.
    McArthur HA; Hancock IC; Baddiley J
    J Bacteriol; 1981 Mar; 145(3):1222-31. PubMed ID: 6782090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases.
    Pereira MP; D'Elia MA; Troczynska J; Brown ED
    J Bacteriol; 2008 Aug; 190(16):5642-9. PubMed ID: 18556787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid intermediates in the biosynthesis of the wall teichoic acid in Staphylococcus lactis 13.
    Hussey H; Baddiley J
    Biochem J; 1972 Mar; 127(1):39-50. PubMed ID: 5073752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro.
    Schertzer JW; Brown ED
    J Biol Chem; 2003 May; 278(20):18002-7. PubMed ID: 12637499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid intermediate in the synthesis of the linkage unit that joins teichoic acid to peptidoglycan in Bacillus subtilis.
    Hancock IC; Wiseman G; Baddiley J
    J Bacteriol; 1981 Aug; 147(2):698-701. PubMed ID: 6790521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N-acetylmannosaminyl(1----4)N-acetylglucosamine, a linkage unit between glycerol teichoic acid and peptidoglycan in cell walls of several Bacillus strains.
    Kaya S; Yokoyama K; Araki Y; Ito E
    J Bacteriol; 1984 Jun; 158(3):990-6. PubMed ID: 6427197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation and inactivation of synthesis of secondary wall polymers in Bacillus subtilis W23.
    Hancock IC
    Arch Microbiol; 1983 Jun; 134(3):222-6. PubMed ID: 6311132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and Biological Activity of Tetrameric Ribitol Phosphate Fragments of Staphylococcus aureus Wall Teichoic Acid.
    Jung YC; Lee JH; Kim SA; Schmidt T; Lee W; Lee BL; Lee HS
    Org Lett; 2018 Aug; 20(15):4449-4452. PubMed ID: 30028624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid.
    Bhavsar AP; Erdman LK; Schertzer JW; Brown ED
    J Bacteriol; 2004 Dec; 186(23):7865-73. PubMed ID: 15547257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of synthesis of wall teichoic acid during balanced growth of Bacillus subtilis W23.
    Cheah SC; Hussey H; Hancock I; Baddiley J
    J Gen Microbiol; 1982 Mar; 128(3):593-9. PubMed ID: 6281365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The function of beta-N-acetyl-D-glucosaminyl monophosphorylundecaprenol in biosynthesis of lipoteichoic acids in a group of Bacillus strains.
    Shimada A; Ohta M; Iwasaki H; Ito E
    Eur J Biochem; 1988 Oct; 176(3):559-65. PubMed ID: 3169013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values.
    Badurina DS; Zolli-Juran M; Brown ED
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):196-206. PubMed ID: 12637027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of the wall teichoic acid in Bacillus licheniformis.
    Hancock IC; Baddiley J
    Biochem J; 1972 Mar; 127(1):27-37. PubMed ID: 5073747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and biosynthesis of teichoic acids in the cell walls of Staphylococcus xylosus DSM 20266.
    Fiedler F; Steber J
    Arch Microbiol; 1984 Aug; 138(4):321-8. PubMed ID: 6477033
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro.
    Bhavsar AP; Truant R; Brown ED
    J Biol Chem; 2005 Nov; 280(44):36691-700. PubMed ID: 16150696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of heterologous genes for wall teichoic acid in Bacillus subtilis 168.
    Karamata D; Pooley HM; Monod M
    Mol Gen Genet; 1987 Apr; 207(1):73-81. PubMed ID: 3110561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adenosine 5'-triphosphate release and membrane collapse in glycerol-requiring mutants of Bacillus subtilis.
    Freese EB; Oh YK
    J Bacteriol; 1974 Oct; 120(1):507-15. PubMed ID: 4371436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of teichoic acid biosynthesis regulation reveals that the extracytoplasmic function sigma factor sigmaM is induced by phosphate depletion in Bacillus subtilis W23.
    Minnig K; Lazarevic V; Soldo B; Mauël C
    Microbiology (Reading); 2005 Sep; 151(Pt 9):3041-3049. PubMed ID: 16151214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.