BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 30967462)

  • 1. Red- and Blue-Light Sensing in the Plant Pathogen Alternaria alternata Depends on Phytochrome and the White-Collar Protein LreA.
    Igbalajobi O; Yu Z; Fischer R
    mBio; 2019 Apr; 10(2):. PubMed ID: 30967462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the Alternaria alternata blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism.
    Pruss S; Fetzner R; Seither K; Herr A; Pfeiffer E; Metzler M; Lawrence CB; Fischer R
    Appl Environ Microbiol; 2014 Apr; 80(8):2582-91. PubMed ID: 24532063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation.
    Hedtke M; Rauscher S; Röhrig J; Rodríguez-Romero J; Yu Z; Fischer R
    Mol Microbiol; 2015 Aug; 97(4):733-45. PubMed ID: 25980340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The LOV-domain blue-light receptor LreA of the fungus Alternaria alternata binds predominantly FAD as chromophore and acts as a light and temperature sensor.
    Schuhmacher L; Heck S; Pitz M; Mathey E; Lamparter T; Blumhofer A; Leister K; Fischer R
    J Biol Chem; 2024 May; 300(5):107238. PubMed ID: 38552736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analyses of light-regulated genes in Aspergillus nidulans reveal a complex interplay between different photoreceptors and novel photoreceptor functions.
    Yu Z; Streng C; Seibeld RF; Igbalajobi OA; Leister K; Ingelfinger J; Fischer R
    PLoS Genet; 2021 Oct; 17(10):e1009845. PubMed ID: 34679095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans.
    Purschwitz J; Müller S; Kastner C; Schöser M; Haas H; Espeso EA; Atoui A; Calvo AM; Fischer R
    Curr Biol; 2008 Feb; 18(4):255-9. PubMed ID: 18291652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light inhibits spore germination through phytochrome in Aspergillus nidulans.
    Röhrig J; Kastner C; Fischer R
    Curr Genet; 2013 May; 59(1-2):55-62. PubMed ID: 23385948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two hybrid histidine kinases, TcsB and the phytochrome FphA, are involved in temperature sensing in Aspergillus nidulans.
    Yu Z; Ali A; Igbalajobi OA; Streng C; Leister K; Krauß N; Lamparter T; Fischer R
    Mol Microbiol; 2019 Dec; 112(6):1814-1830. PubMed ID: 31556180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB.
    Purschwitz J; Müller S; Fischer R
    Mol Genet Genomics; 2009 Jan; 281(1):35-42. PubMed ID: 18936976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of conidiation by light in Aspergillus nidulans.
    Ruger-Herreros C; Rodríguez-Romero J; Fernández-Barranco R; Olmedo M; Fischer R; Corrochano LM; Canovas D
    Genetics; 2011 Aug; 188(4):809-22. PubMed ID: 21624998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HOG Pathway Plays Different Roles in Conidia and Hyphae During Virulence of
    Igbalajobi O; Gao J; Fischer R
    Mol Plant Microbe Interact; 2020 Dec; 33(12):1405-1410. PubMed ID: 33104446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling.
    Yu Z; Armant O; Fischer R
    Nat Microbiol; 2016 Feb; 1():16019. PubMed ID: 27572639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond.
    Corrochano LM
    Annu Rev Genet; 2019 Dec; 53():149-170. PubMed ID: 31451036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of CRISPR/Cas9 in Alternaria alternata.
    Wenderoth M; Pinecker C; Voß B; Fischer R
    Fungal Genet Biol; 2017 Apr; 101():55-60. PubMed ID: 28286319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of nitrogen utilization and mycotoxin biosynthesis by the GATA transcription factor AaAreA in Alternaria alternata.
    Wang L; Wang C; Xu L; Wang M
    World J Microbiol Biotechnol; 2024 Jun; 40(8):236. PubMed ID: 38850454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Aspergillus nidulans phytochrome FphA represses sexual development in red light.
    Blumenstein A; Vienken K; Tasler R; Purschwitz J; Veith D; Frankenberg-Dinkel N; Fischer R
    Curr Biol; 2005 Oct; 15(20):1833-8. PubMed ID: 16243030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Aspergillus nidulans Velvet-interacting protein, VipA, is involved in light-stimulated heme biosynthesis.
    Röhrig J; Yu Z; Chae KS; Kim JH; Han KH; Fischer R
    Mol Microbiol; 2017 Sep; 105(6):825-838. PubMed ID: 28657694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytochrome controls conidiation in response to red/far-red light and daylight length and regulates multistress tolerance in Beauveria bassiana.
    Qiu L; Wang JJ; Chu ZJ; Ying SH; Feng MG
    Environ Microbiol; 2014 Jul; 16(7):2316-28. PubMed ID: 24725588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes.
    Lin CH; Yang SL; Wang NY; Chung KR
    Fungal Genet Biol; 2010 Apr; 47(4):381-91. PubMed ID: 20036749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternaria alternata transcription factor CmrA controls melanization and spore development.
    Fetzner R; Seither K; Wenderoth M; Herr A; Fischer R
    Microbiology (Reading); 2014 Sep; 160(Pt 9):1845-1854. PubMed ID: 24972701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.