BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 30967541)

  • 1. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell RNA-seq clustering: datasets, models, and algorithms.
    Peng L; Tian X; Tian G; Xu J; Huang X; Weng Y; Yang J; Zhou L
    RNA Biol; 2020 Jun; 17(6):765-783. PubMed ID: 32116127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A component overlapping attribute clustering (COAC) algorithm for single-cell RNA sequencing data analysis and potential pathobiological implications.
    Peng H; Zeng X; Zhou Y; Zhang D; Nussinov R; Cheng F
    PLoS Comput Biol; 2019 Feb; 15(2):e1006772. PubMed ID: 30779739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating single-cell transcriptomic data across different conditions, technologies, and species.
    Butler A; Hoffman P; Smibert P; Papalexi E; Satija R
    Nat Biotechnol; 2018 Jun; 36(5):411-420. PubMed ID: 29608179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The promise of single-cell RNA sequencing for kidney disease investigation.
    Wu H; Humphreys BD
    Kidney Int; 2017 Dec; 92(6):1334-1342. PubMed ID: 28893418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scDAC: deep adaptive clustering of single-cell transcriptomic data with coupled autoencoder and Dirichlet process mixture model.
    An S; Shi J; Liu R; Chen Y; Wang J; Hu S; Xia X; Dong G; Bo X; He Z; Ying X
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38603616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Subpopulations of Cells in Single-Cell Transcriptomic Data: A Bayesian Mixture Modeling Approach to Zero Inflation of Counts.
    Wilson T; Vo DHT; Thorne T
    J Comput Biol; 2023 Oct; 30(10):1059-1074. PubMed ID: 37871291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data denoising with transfer learning in single-cell transcriptomics.
    Wang J; Agarwal D; Huang M; Hu G; Zhou Z; Ye C; Zhang NR
    Nat Methods; 2019 Sep; 16(9):875-878. PubMed ID: 31471617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mbkmeans: Fast clustering for single cell data using mini-batch k-means.
    Hicks SC; Liu R; Ni Y; Purdom E; Risso D
    PLoS Comput Biol; 2021 Jan; 17(1):e1008625. PubMed ID: 33497379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach.
    Shi F; Huang H
    J Comput Biol; 2017 Jul; 24(7):663-674. PubMed ID: 28657835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An interpretable single-cell RNA sequencing data clustering method based on latent Dirichlet allocation.
    Yang Q; Xu Z; Zhou W; Wang P; Jiang Q; Juan L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37225419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data.
    Mieth B; Hockley JRF; Görnitz N; Vidovic MM; Müller KR; Gutteridge A; Ziemek D
    Sci Rep; 2019 Dec; 9(1):20353. PubMed ID: 31889137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and Visualization of Single-Cell Sequencing Data with Scanpy and MetaCell: A Tutorial.
    Li Y; Sun C; Romanova DY; Wu DO; Fang R; Moroz LL
    Methods Mol Biol; 2024; 2757():383-445. PubMed ID: 38668977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ZINBMM: a general mixture model for simultaneous clustering and gene selection using single-cell transcriptomic data.
    Li Y; Wu M; Ma S; Wu M
    Genome Biol; 2023 Sep; 24(1):208. PubMed ID: 37697330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new and effective two-step clustering approach for single cell RNA sequencing data.
    Li R; Guan J; Wang Z; Zhou S
    BMC Genomics; 2023 Nov; 23(Suppl 6):864. PubMed ID: 37946133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of Single-Cell RNA Sequencing in the Heart.
    Yamada S; Nomura S
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33172208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving replicability in single-cell RNA-Seq cell type discovery with Dune.
    Roux de Bézieux H; Street K; Fischer S; Van den Berge K; Chance R; Risso D; Gillis J; Ngai J; Purdom E; Dudoit S
    BMC Bioinformatics; 2024 May; 25(1):198. PubMed ID: 38789920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scedar: A scalable Python package for single-cell RNA-seq exploratory data analysis.
    Zhang Y; Kim MS; Reichenberger ER; Stear B; Taylor DM
    PLoS Comput Biol; 2020 Apr; 16(4):e1007794. PubMed ID: 32339163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CASi: A framework for cross-timepoint analysis of single-cell RNA sequencing data.
    Wang Y; Flowers CR; Wang M; Huang X; Li Z
    Sci Rep; 2024 May; 14(1):10633. PubMed ID: 38724550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles.
    Mallik S; Zhao Z
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31412637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.