BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30967612)

  • 1. Formation of tubules and helical ribbons by ceramide phosphoethanolamine-containing membranes.
    Inaba T; Murate M; Tomishige N; Lee YF; Hullin-Matsuda F; Pollet B; Humbert N; Mély Y; Sako Y; Greimel P; Kobayashi T
    Sci Rep; 2019 Apr; 9(1):5812. PubMed ID: 30967612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wrapping axons in mammals and Drosophila: Different lipids, same principle.
    Murate M; Tomishige N; Kobayashi T
    Biochimie; 2020 Nov; 178():39-48. PubMed ID: 32800899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects.
    Kulkarni VS; Anderson WH; Brown RE
    Biophys J; 1995 Nov; 69(5):1976-86. PubMed ID: 8580341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceramide phosphoethanolamine, an enigmatic cellular membrane sphingolipid.
    Panevska A; Skočaj M; Križaj I; Maček P; Sepčić K
    Biochim Biophys Acta Biomembr; 2019 Jul; 1861(7):1284-1292. PubMed ID: 31067435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally induced phase separation in supported bilayers of glycosphingolipid and phospholipid mixtures.
    Szmodis AW; Blanchette CD; Longo ML; Orme CA; Parikh AN
    Biointerphases; 2010 Dec; 5(4):120-30. PubMed ID: 21219033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines.
    Smaby JM; Kulkarni VS; Momsen M; Brown RE
    Biophys J; 1996 Feb; 70(2):868-77. PubMed ID: 8789104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol.
    Lin WC; Blanchette CD; Longo ML
    Biophys J; 2007 Apr; 92(8):2831-41. PubMed ID: 17237202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates.
    Bhat HB; Ishitsuka R; Inaba T; Murate M; Abe M; Makino A; Kohyama-Koganeya A; Nagao K; Kurahashi A; Kishimoto T; Tahara M; Yamano A; Nagamune K; Hirabayashi Y; Juni N; Umeda M; Fujimori F; Nishibori K; Yamaji-Hasegawa A; Greimel P; Kobayashi T
    FASEB J; 2015 Sep; 29(9):3920-34. PubMed ID: 26060215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miscibility of acyl-chain defined phosphatidylcholines with N-palmitoyl sphingomyelin in bilayer membranes.
    Térová B; Slotte JP; Nyholm TK
    Biochim Biophys Acta; 2004 Dec; 1667(2):182-9. PubMed ID: 15581854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of galactosylceramides on the nanomechanical properties of lipid bilayer models: an AFM-force spectroscopy study.
    Gumí-Audenis B; Sanz F; Giannotti MI
    Soft Matter; 2015 Jul; 11(27):5447-54. PubMed ID: 26058499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure of galactosylceramide to galactose oxidase in liposomes: dependence on lipid environment and ceramide composition.
    Stewart RJ; Boggs JM
    Biochemistry; 1993 Jun; 32(21):5605-14. PubMed ID: 8504080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral diffusion in equimolar mixtures of natural sphingomyelins with dioleoylphosphatidylcholine.
    Filippov A; Munavirov B; Gröbner G; Rudakova M
    Magn Reson Imaging; 2012 Apr; 30(3):413-21. PubMed ID: 22260936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine.
    Brown RE; Anderson WH; Kulkarni VS
    Biophys J; 1995 Apr; 68(4):1396-405. PubMed ID: 7787025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.
    Caillon L; Lequin O; Khemtémourian L
    Biochim Biophys Acta; 2013 Sep; 1828(9):2091-8. PubMed ID: 23707907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosphingolipid acyl chain orientational order in unsaturated phosphatidylcholine bilayers.
    Morrow MR; Singh D; Lu D; Grant CW
    Biophys J; 1993 Mar; 64(3):654-64. PubMed ID: 8471718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled microstructures from 1,2-ethanediol suspensions of pure and binary mixtures of neutral and acidic biological galactosylceramides.
    Archibald DD; Mann S
    Chem Phys Lipids; 1994 Jan; 69(1):51-64. PubMed ID: 8200057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
    Blanchette CD; Lin WC; Ratto TV; Longo ML
    Biophys J; 2006 Jun; 90(12):4466-78. PubMed ID: 16565044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.