These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30967632)

  • 1. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation.
    Stetka J; Vyhlidalova P; Lanikova L; Koralkova P; Gursky J; Hlusi A; Flodr P; Hubackova S; Bartek J; Hodny Z; Divoky V
    Oncogene; 2019 Jul; 38(28):5627-5642. PubMed ID: 30967632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F.
    Boissinot M; Cleyrat C; Vilaine M; Jacques Y; Corre I; Hermouet S
    Oncogene; 2011 Feb; 30(8):990-1001. PubMed ID: 21042281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematopoietic clonal dominance, stem cell mutations, and evolutionary pattern of JAK2V617F allele burden in polycythemia vera.
    Angona A; Alvarez-Larrán A; Bellosillo B; Martínez-Avilés L; Camacho L; Fernández-Rodríguez C; Pairet S; Longarón R; Ancochea Á; Senín A; Florensa L; Besses C
    Eur J Haematol; 2015 Mar; 94(3):251-7. PubMed ID: 25082530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional profiling of polycythemia vera identifies gene expression patterns both dependent and independent from the action of JAK2V617F.
    Berkofsky-Fessler W; Buzzai M; Kim MK; Fruchtman S; Najfeld V; Min DJ; Costa FF; Bischof JM; Soares MB; McConnell MJ; Zhang W; Levine R; Gilliland DG; Calogero R; Licht JD
    Clin Cancer Res; 2010 Sep; 16(17):4339-52. PubMed ID: 20601445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity.
    James C; Mazurier F; Dupont S; Chaligne R; Lamrissi-Garcia I; Tulliez M; Lippert E; Mahon FX; Pasquet JM; Etienne G; Delhommeau F; Giraudier S; Vainchenker W; de Verneuil H
    Blood; 2008 Sep; 112(6):2429-38. PubMed ID: 18612101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of two tyrosine kinase inhibitors on growth and signal transduction in polycythemia vera.
    Gaikwad A; Prchal JT
    Exp Hematol; 2007 Nov; 35(11):1647-56. PubMed ID: 17976517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined inhibition of Janus kinase 1/2 for the treatment of JAK2V617F-driven neoplasms: selective effects on mutant cells and improvements in measures of disease severity.
    Liu PC; Caulder E; Li J; Waeltz P; Margulis A; Wynn R; Becker-Pasha M; Li Y; Crowgey E; Hollis G; Haley P; Sparks RB; Combs AP; Rodgers JD; Burn TC; Vaddi K; Fridman JS
    Clin Cancer Res; 2009 Nov; 15(22):6891-900. PubMed ID: 19887489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of CD34+ cells isolated from patients with polycythemia vera in NOD/SCID mice.
    Ishii T; Zhao Y; Sozer S; Shi J; Zhang W; Hoffman R; Xu M
    Exp Hematol; 2007 Nov; 35(11):1633-40. PubMed ID: 17764815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential roles of STAT1 and STAT2 in the sensitivity of JAK2V617F- vs. BCR-ABL-positive cells to interferon alpha.
    Schubert C; Allhoff M; Tillmann S; Maié T; Costa IG; Lipka DB; Schemionek M; Feldberg K; Baumeister J; Brümmendorf TH; Chatain N; Koschmieder S
    J Hematol Oncol; 2019 Apr; 12(1):36. PubMed ID: 30940163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of DNA Damage Response in Suppressing Malignant Progression of Chronic Myeloid Leukemia and Polycythemia Vera: Impact of Different Oncogenes.
    Stetka J; Gursky J; Liñan Velasquez J; Mojzikova R; Vyhlidalova P; Vrablova L; Bartek J; Divoky V
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of vorinostat in a murine model of polycythemia vera.
    Akada H; Akada S; Gajra A; Bair A; Graziano S; Hutchison RE; Mohi G
    Blood; 2012 Apr; 119(16):3779-89. PubMed ID: 22408262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Manifestations and Risk Factors for Complications of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.
    Duangnapasatit B; Rattarittamrong E; Rattanathammethee T; Hantrakool S; Chai-Adisaksopha C; Tantiworawit A; Norasetthada L
    Asian Pac J Cancer Prev; 2015; 16(12):5013-8. PubMed ID: 26163633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms.
    Baumeister J; Chatain N; Hubrich A; Maié T; Costa IG; Denecke B; Han L; Küstermann C; Sontag S; Seré K; Strathmann K; Zenke M; Schuppert A; Brümmendorf TH; Kranc KR; Koschmieder S; Gezer D
    Leukemia; 2020 Apr; 34(4):1062-1074. PubMed ID: 31728053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells.
    Lu M; Wang X; Li Y; Tripodi J; Mosoyan G; Mascarenhas J; Kremyanskaya M; Najfeld V; Hoffman R
    Blood; 2012 Oct; 120(15):3098-105. PubMed ID: 22872685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling.
    Chen E; Beer PA; Godfrey AL; Ortmann CA; Li J; Costa-Pereira AP; Ingle CE; Dermitzakis ET; Campbell PJ; Green AR
    Cancer Cell; 2010 Nov; 18(5):524-35. PubMed ID: 21074499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Description of a knock-in mouse model of JAK2V617F MPN emerging from a minority of mutated hematopoietic stem cells.
    Mansier O; Kilani B; Guitart AV; Guy A; Gourdou-Latyszenok V; Marty C; Parrens M; Plo I; Vainchenker W; James C
    Blood; 2019 Dec; 134(26):2383-2387. PubMed ID: 31697834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model.
    Wernig G; Mercher T; Okabe R; Levine RL; Lee BH; Gilliland DG
    Blood; 2006 Jun; 107(11):4274-81. PubMed ID: 16478879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of murine JAK2V617F-positive myeloproliferative disease.
    Bumm TG; Elsea C; Corbin AS; Loriaux M; Sherbenou D; Wood L; Deininger J; Silver RT; Druker BJ; Deininger MW
    Cancer Res; 2006 Dec; 66(23):11156-65. PubMed ID: 17145859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ropeginterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo.
    Verger E; Soret-Dulphy J; Maslah N; Roy L; Rey J; Ghrieb Z; Kralovics R; Gisslinger H; Grohmann-Izay B; Klade C; Chomienne C; Giraudier S; Cassinat B; Kiladjian JJ
    Blood Cancer J; 2018 Oct; 8(10):94. PubMed ID: 30287855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia inhibits JAK2V617F activation via suppression of SHP-2 function in myeloproliferative neoplasm cells.
    Mitsumori T; Nozaki Y; Kawashima I; Yamamoto T; Shobu Y; Nakajima K; Morishita S; Komatsu N; Kirito K
    Exp Hematol; 2014 Sep; 42(9):783-92.e1. PubMed ID: 24860972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.