These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30967787)

  • 1. Tightening Up the Control of Treadmill Walking: Effects of Maneuverability Range and Acoustic Pacing on Stride-to-Stride Fluctuations.
    Roerdink M; de Jonge CP; Smid LM; Daffertshofer A
    Front Physiol; 2019; 10():257. PubMed ID: 30967787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill?
    Roerdink M; Daffertshofer A; Marmelat V; Beek PJ
    PLoS One; 2015; 10(7):e0134148. PubMed ID: 26230254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent and anti-persistent pattern in stride-to-stride variability of treadmill walking: influence of rhythmic auditory cueing.
    Terrier P; Dériaz O
    Hum Mov Sci; 2012 Dec; 31(6):1585-97. PubMed ID: 23164626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive treadmill walking encourages persistent propulsion.
    Donlin MC; Pariser KM; Downer KE; Higginson JS
    Gait Posture; 2022 Mar; 93():246-251. PubMed ID: 35190317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking.
    Ojeda LV; Rebula JR; Kuo AD; Adamczyk PG
    Med Eng Phys; 2015 Oct; 37(10):929-36. PubMed ID: 26250066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Humans control stride-to-stride stepping movements differently for walking and running, independent of speed.
    Dingwell JB; Bohnsack-McLagan NK; Cusumano JP
    J Biomech; 2018 Jul; 76():144-151. PubMed ID: 29914740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Stride Interval Characteristics during Continuous Stairmill Climbing.
    Raffalt PC; Vallabhajosula S; Renz JJ; Mukherjee M; Stergiou N
    Front Physiol; 2017; 8():609. PubMed ID: 28878688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptability of stride-to-stride control of stepping movements in human walking.
    Bohnsack-McLagan NK; Cusumano JP; Dingwell JB
    J Biomech; 2016 Jan; 49(2):229-37. PubMed ID: 26725217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking.
    Dingwell JB; Cusumano JP
    Gait Posture; 2010 Jul; 32(3):348-53. PubMed ID: 20605097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do humans optimally exploit redundancy to control step variability in walking?
    Dingwell JB; John J; Cusumano JP
    PLoS Comput Biol; 2010 Jul; 6(7):e1000856. PubMed ID: 20657664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of speed and time on gait dynamics.
    Thomas KS; Russell DM; Van Lunen BL; Colberg SR; Morrison S
    Hum Mov Sci; 2017 Aug; 54():320-330. PubMed ID: 28641172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of variability and gait dynamics in spatiotemporal variables between different self-paced treadmill control modes.
    Wei W; Kaiming Y; Yu Z; Yuyang Q; Chenhui W
    J Biomech; 2020 Sep; 110():109979. PubMed ID: 32827775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is there a trade-off between economy and task goal variability in transfemoral amputee gait?
    Lee IC; Fylstra BL; Liu M; Lenzi T; Huang H
    J Neuroeng Rehabil; 2022 Mar; 19(1):29. PubMed ID: 35300696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistence and anti-persistence in treadmill walking.
    Kozlowska K; Latka M; West BJ
    Gait Posture; 2022 Feb; 92():36-43. PubMed ID: 34808517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speed-dependent temporospatial gait variability and long-range correlations in cerebellar ataxia.
    Wuehr M; Schniepp R; Ilmberger J; Brandt T; Jahn K
    Gait Posture; 2013 Feb; 37(2):214-8. PubMed ID: 22840892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the application of entropic half-life and statistical persistence decay for quantification of time dependency in human gait.
    Raffalt PC; Yentes JM
    J Biomech; 2020 Jul; 108():109893. PubMed ID: 32636006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPS analysis of human locomotion: further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters.
    Terrier P; Turner V; Schutz Y
    Hum Mov Sci; 2005 Feb; 24(1):97-115. PubMed ID: 15896861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying stride-to-stride control strategies in human treadmill walking.
    Dingwell JB; Cusumano JP
    PLoS One; 2015; 10(4):e0124879. PubMed ID: 25910253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.
    Hollman JH; Watkins MK; Imhoff AC; Braun CE; Akervik KA; Ness DK
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():91-97. PubMed ID: 27380204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.