BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30968011)

  • 1. Hydrothermal Dehydration of Monosaccharides Promoted by Seawater: Fundamentals on the Catalytic Role of Inorganic Salts.
    Kammoun M; Istasse T; Ayeb H; Rassaa N; Bettaieb T; Richel A
    Front Chem; 2019; 7():132. PubMed ID: 30968011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal decomposition of glucose and fructose with inorganic and organic potassium salts.
    Wu X; Fu J; Lu X
    Bioresour Technol; 2012 Sep; 119():48-54. PubMed ID: 22728181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subcritical water hydrolysis of N-acetyl-D-glucosamine: Hydrolysis mechanism, reaction pathways and optimization for selective production of 5-HMF and levulinic acid.
    Kulkarni SP; Dure SN; Joshi SS; Pandare KV; Mali NA
    Carbohydr Res; 2022 Jun; 516():108560. PubMed ID: 35483153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous upgrading of biomass-derived sugars to HMF/furfural via enzymatically isomerized ketose intermediates.
    Wang W; Mittal A; Pilath H; Chen X; Tucker MP; Johnson DK
    Biotechnol Biofuels; 2019; 12():253. PubMed ID: 31673288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formic acid as a sacrificial agent for byproduct suppression in glucose dehydration to 5-hydroxymethylfurfural using NaY zeolite catalyst.
    Boonyoung P; Thongratkaew S; Rungtaweevoranit B; Pengsawang A; Praserthdam P; Sanpitakseree C; Faungnawakij K
    Bioresour Technol; 2024 Jan; 392():130010. PubMed ID: 37952589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.
    Jeong TS; Choi CH; Lee JY; Oh KK
    Bioresour Technol; 2012 Jul; 116():435-40. PubMed ID: 22522017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5-hydroxymethylfurfural.
    Wang C; Zhang L; Zhou T; Chen J; Xu F
    Sci Rep; 2017 Jan; 7():40908. PubMed ID: 28084456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural by germanium(IV) chloride in ionic liquids.
    Zhang Z; Wang Q; Xie H; Liu W; Zhao ZK
    ChemSusChem; 2011 Jan; 4(1):131-8. PubMed ID: 21226223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction.
    Shao Y; Tsang DCW; Shen D; Zhou Y; Jin Z; Zhou D; Lu W; Long Y
    Environ Res; 2020 May; 184():109340. PubMed ID: 32209494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valorization of hexoses into 5-hydroxymethylfurfural and levulinic acid in acidic seawater under microwave hydrothermal conditions.
    Shao Y; Chen J; Ding X; Lu W; Shen D; Long Y
    Environ Technol; 2022 Nov; ():1-10. PubMed ID: 36369796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural.
    Karinen R; Vilonen K; Niemelä M
    ChemSusChem; 2011 Aug; 4(8):1002-16. PubMed ID: 21728248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases.
    Fusaro MB; Chagnault V; Postel D
    Carbohydr Res; 2015 May; 409():9-19. PubMed ID: 25889471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.
    Li J; Jiang Z; Hu L; Hu C
    ChemSusChem; 2014 Sep; 7(9):2482-8. PubMed ID: 25045141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates.
    Baugh KD; McCarty PL
    Biotechnol Bioeng; 1988 Jan; 31(1):50-61. PubMed ID: 18581563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining Acid Formation During the Selective Dehydration of Fructose to 5-Hydroxymethylfurfural in Dimethyl Sulfoxide and Water.
    Whitaker MR; Parulkar A; Ranadive P; Joshi R; Brunelli NA
    ChemSusChem; 2019 May; 12(10):2211-2219. PubMed ID: 30908838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Different Lactobacilli Regarding Substrate Utilization and Their Tolerance Towards Lignocellulose Degradation Products.
    Gubelt A; Blaschke L; Hahn T; Rupp S; Hirth T; Zibek S
    Curr Microbiol; 2020 Oct; 77(10):3136-3146. PubMed ID: 32728792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of Brewery's spent grain dilute-acid hydrolysis for the production of pentose-rich culture media.
    Carvalheiro F; Duarte LC; Medeiros R; Gírio FM
    Appl Biochem Biotechnol; 2004; 113-116():1059-72. PubMed ID: 15054253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis.
    Dedes G; Karnaouri A; Marianou AA; Kalogiannis KG; Michailof CM; Lappas AA; Topakas E
    Biotechnol Biofuels; 2021 Aug; 14(1):172. PubMed ID: 34454576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.