These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30968086)

  • 1. Morphology evolution of fcc Ru nanoparticles under hydrogen atmosphere.
    Liu L; Yu M; Hou B; Wang Q; Zhu B; Jia L; Li D
    Nanoscale; 2019 Apr; 11(16):8037-8046. PubMed ID: 30968086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ru Octahedral Nanocrystals with a Face-Centered Cubic Structure, {111} Facets, Thermal Stability up to 400 °C, and Enhanced Catalytic Activity.
    Zhao M; Chen Z; Lyu Z; Hood ZD; Xie M; Vara M; Chi M; Xia Y
    J Am Chem Soc; 2019 May; 141(17):7028-7036. PubMed ID: 30973711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape Evolution of Metal Nanoparticles in Water Vapor Environment.
    Zhu B; Xu Z; Wang C; Gao Y
    Nano Lett; 2016 Apr; 16(4):2628-32. PubMed ID: 26985595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Insights into the Design and Development of Face-Centered Cubic Ruthenium Catalysts for Fischer-Tropsch Synthesis.
    Li WZ; Liu JX; Gu J; Zhou W; Yao SY; Si R; Guo Y; Su HY; Yan CH; Li WX; Zhang YW; Ma D
    J Am Chem Soc; 2017 Feb; 139(6):2267-2276. PubMed ID: 28099028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology-dependent adsorption energetics of Ru nanoparticles on hcp-boron nitride (001) surface - a first-principles study.
    Senthamaraikannan TG; Yoon CW; Lim DH
    Nanoscale Adv; 2023 May; 5(9):2422-2426. PubMed ID: 37143815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR.
    Avanesian T; Dai S; Kale MJ; Graham GW; Pan X; Christopher P
    J Am Chem Soc; 2017 Mar; 139(12):4551-4558. PubMed ID: 28263592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring ruthenium exposure to enhance the performance of fcc platinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction.
    AlYami NM; LaGrow AP; Joya KS; Hwang J; Katsiev K; Anjum DH; Losovyj Y; Sinatra L; Kim JY; Bakr OM
    Phys Chem Chem Phys; 2016 Jun; 18(24):16169-78. PubMed ID: 27242173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Hierarchical 4H/fcc Ru Nanotubes for Highly Efficient Hydrogen Evolution in Alkaline Media.
    Lu Q; Wang AL; Cheng H; Gong Y; Yun Q; Yang N; Li B; Chen B; Zhang Q; Zong Y; Gu L; Zhang H
    Small; 2018 Jul; 14(30):e1801090. PubMed ID: 29956483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Engineering of a Ruthenium Nanostructure toward High-Performance Bifunctional Hydrogen Catalysis.
    Li L; Liu C; Liu S; Wang J; Han J; Chan TS; Li Y; Hu Z; Shao Q; Zhang Q; Huang X
    ACS Nano; 2022 Sep; 16(9):14885-14894. PubMed ID: 35998344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires.
    Lu Q; Wang AL; Gong Y; Hao W; Cheng H; Chen J; Li B; Yang N; Niu W; Wang J; Yu Y; Zhang X; Chen Y; Fan Z; Wu XJ; Chen J; Luo J; Li S; Gu L; Zhang H
    Nat Chem; 2018 Apr; 10(4):456-461. PubMed ID: 29531375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafine Nanoparticle-Supported Ru Nanoclusters with Ultrahigh Catalytic Activity.
    Zhu L; Jiang Y; Zheng J; Zhang N; Yu C; Li Y; Pao CW; Chen JL; Jin C; Lee JF; Zhong CJ; Chen BH
    Small; 2015 Sep; 11(34):4385-93. PubMed ID: 26081741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First principles study of oxygen adsorption on Se-modified Ru nanoparticles.
    Zuluaga S; Stolbov S
    J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium Nanoframes in the Face-Centered Cubic Phase: Facile Synthesis and Their Enhanced Catalytic Performance.
    Zhao M; Hood ZD; Vara M; Gilroy KD; Chi M; Xia Y
    ACS Nano; 2019 Jun; 13(6):7241-7251. PubMed ID: 31145858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DFT Study of Ruthenium
    Ungerer MJ; de Leeuw NH
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and mechanistic analysis of NH
    Lu X; Zhang J; Chen WK; Roldan A
    Nanoscale Adv; 2021 Mar; 3(6):1624-1632. PubMed ID: 36132568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reshaping of Metal Nanoparticles Under Reaction Conditions.
    Zhu B; Meng J; Yuan W; Zhang X; Yang H; Wang Y; Gao Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2171-2180. PubMed ID: 31298462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive morphology, stoichiometry and structure of surface species in supported Ru nanoparticles under H2 and CO atmospheres from combined experimental and DFT studies.
    Comas-Vives A; Furman K; Gajan D; Akatay MC; Lesage A; Ribeiro FH; Copéret C
    Phys Chem Chem Phys; 2016 Jan; 18(3):1969-79. PubMed ID: 26686546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear instabilities in metallic nanoparticles: hydrogen-stabilized structure of Pt37 on carbon.
    Wang LL; Johnson DD
    J Am Chem Soc; 2007 Mar; 129(12):3658-64. PubMed ID: 17338525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure.
    Kumara LS; Sakata O; Kohara S; Yang A; Song C; Kusada K; Kobayashi H; Kitagawa H
    Phys Chem Chem Phys; 2016 Nov; 18(44):30622-30629. PubMed ID: 27787531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: controlled synthesis and DFT calculations.
    Yin AX; Liu WC; Ke J; Zhu W; Gu J; Zhang YW; Yan CH
    J Am Chem Soc; 2012 Dec; 134(50):20479-89. PubMed ID: 23181397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.