These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30968086)

  • 21. Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data.
    Song C; Sakata O; Kumara LS; Kohara S; Yang A; Kusada K; Kobayashi H; Kitagawa H
    Sci Rep; 2016 Aug; 6():31400. PubMed ID: 27506187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cubic-Core Hexagonal-Branch Mechanism To Synthesize Bimetallic Branched and Faceted Pd-Ru Nanoparticles for Oxygen Evolution Reaction Electrocatalysis.
    Gloag L; Benedetti TM; Cheong S; Marjo CE; Gooding JJ; Tilley RD
    J Am Chem Soc; 2018 Oct; 140(40):12760-12764. PubMed ID: 30277400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations.
    Han Y; Evans JW
    J Chem Phys; 2015 Oct; 143(16):164706. PubMed ID: 26520542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic-Modulated Crystal Phase of Ru for Hydrogen Oxidation.
    Zhang J; Cao M; Li X; Xu Y; Zhao W; Chen L; Chang YC; Pao CW; Hu Z; Huang X
    Small; 2023 May; 19(19):e2207038. PubMed ID: 36755212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of reflux time on nanoparticle shape.
    Srivastava C; Sushma KV
    Microsc Microanal; 2014 Jun; 20(3):847-51. PubMed ID: 24548558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium-Tungsten Composite Catalyst for the Efficient and Contamination-Resistant Electrochemical Evolution of Hydrogen.
    Joshi U; Malkhandi S; Ren Y; Tan TL; Chiam SY; Yeo BS
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6354-6360. PubMed ID: 29431422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Branched and Faceted Gold-Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis.
    Gloag L; Benedetti TM; Cheong S; Li Y; Chan XH; Lacroix LM; Chang SLY; Arenal R; Florea I; Barron H; Barnard AS; Henning AM; Zhao C; Schuhmann W; Gooding JJ; Tilley RD
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10241-10245. PubMed ID: 29896878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DFT calculation of oxygen adsorption on platinum nanoparticles: coverage and size effects.
    Verga LG; Aarons J; Sarwar M; Thompsett D; Russell AE; Skylaris CK
    Faraday Discuss; 2018 Sep; 208(0):497-522. PubMed ID: 29808835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase-Controlled Synthesis of Ru Nanocrystals via Template-Directed Growth: Surface Energy versus Bulk Energy.
    Janssen A; Lyu Z; Figueras-Valls M; Chao HY; Shi Y; Pawlik V; Chi M; Mavrikakis M; Xia Y
    Nano Lett; 2022 May; 22(9):3591-3597. PubMed ID: 35439017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis.
    Song Z; Cai T; Hanson JC; Rodriguez JA; Hrbek J
    J Am Chem Soc; 2004 Jul; 126(27):8576-84. PubMed ID: 15238017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticle shapes by using Wulff constructions and first-principles calculations.
    Barmparis GD; Lodziana Z; Lopez N; Remediakis IN
    Beilstein J Nanotechnol; 2015; 6():361-8. PubMed ID: 25821675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and morphology of iron-iron oxide core-shell nanoparticles produced by high pressure gas condensation.
    Xing L; Ten Brink GH; Chen B; Schmidt FP; Haberfehlner G; Hofer F; Kooi BJ; Palasantzas G
    Nanotechnology; 2016 May; 27(21):215703. PubMed ID: 27089553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ru Nanoframes with an fcc Structure and Enhanced Catalytic Properties.
    Ye H; Wang Q; Catalano M; Lu N; Vermeylen J; Kim MJ; Liu Y; Sun Y; Xia X
    Nano Lett; 2016 Apr; 16(4):2812-7. PubMed ID: 26999499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles.
    Zhang Q; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Kawaguchi S; Kubota Y; Kitagawa H
    Nat Commun; 2018 Feb; 9(1):510. PubMed ID: 29410399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method.
    Kusada K; Kobayashi H; Yamamoto T; Matsumura S; Sumi N; Sato K; Nagaoka K; Kubota Y; Kitagawa H
    J Am Chem Soc; 2013 Apr; 135(15):5493-6. PubMed ID: 23557199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface and shape modification of mackinawite (FeS) nanocrystals by cysteine adsorption: a first-principles DFT-D2 study.
    Dzade NY; Roldan A; de Leeuw NH
    Phys Chem Chem Phys; 2016 Nov; 18(47):32007-32020. PubMed ID: 27711676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties.
    Zhao Y; Luo Y; Yang X; Yang Y; Song Q
    J Hazard Mater; 2017 Jun; 332():124-131. PubMed ID: 28285105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of nanoparticle Pt-Ru fuel cell catalysts by heat treatment: a 195Pt NMR and electrochemical study.
    Babu PK; Kim HS; Kuk ST; Chung JH; Oldfield E; Wieckowski A; Smotkin ES
    J Phys Chem B; 2005 Sep; 109(36):17192-6. PubMed ID: 16853193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.